369. Physical Properties and Chemical Constitution. Part XXIII. Miscellaneous Compounds. Investigation of the So-called Co-ordinate or Dative Link in Esters of Oxy-acids and in Nitro-paraffins by Molecular Refractivity Determinations. Atomic, Structural, and Group Parachors and Refractivities.

By Arthur I. Vogel.

New determinations of the refractivities at 20° and of the parachors of esters of dichloroacetic and trichloroacetic acid have been made with the object of investigating the influence of two or three chlorine atoms respectively attached to the same carbon atom; the resulting constants were not exact multiples of those found for chlorine in monosubstituted compounds (Part XIV, this vol., p. 644). Similarly, the constants for $\geqslant \mathrm{CH}$ evaluated from measurements upon trialkyl orthoformates, $\mathrm{CH}(\mathrm{OR})_{3}$, were not exactly equal to $(\mathrm{C}+\mathrm{H})$ deduced from aliphatic hydrocarbons (Part IX, J., 1946, I33).

An analysis of the experimental results for dialkyl sulphites and sulphates and of trialkyl orthophosphates (Part VII, $J ., 1943,16$) led to constants for the $>\mathrm{SO},>\mathrm{SO}_{2}$, and $\geqslant \mathrm{PO}$ groups, but no evidence from parachors or refractivities of the presence of covalent double bonds was apparent. Similar results were obtained from $\mathrm{SO}_{2} \mathrm{Cl}_{2}-\mathrm{SOCl}_{2}$ and from $\mathrm{POCl}_{3}-\mathrm{PCl}_{3}$. The physical constants of the $-\mathrm{N}=\mathrm{O}$ group in nitrosoamines, deduced from $\mathrm{R}_{2} \mathrm{~N} \cdot \mathrm{NO}+\mathrm{H}-\mathrm{R}_{2} \mathrm{NH}$, were not comparable with those for \searrow PO.

Determinations have also been made of the parachors and refractivities of dialkyl nitrosoamines, nitro-paraffins, alkyl nitrites, alkyl nitrates, dialkyl carbonates, alkyl thiocyanates and isothiocyanates, and alkyl xanthates, and the constants of the following groups were evaluated : $-\mathrm{N}(\mathrm{NO}),-\mathrm{NO}_{2},-\mathrm{ONO},-\mathrm{NO}_{3},-\mathrm{SCN},-\mathrm{NCS}$, and $>\mathrm{CS}$. The constants for $>\mathrm{CO}$ in dialkyl carbonates were almost identical with those previously found for aliphatic ketones (Part XI, this vol., p. 610), and the constants for -CN in alkyl thiocyanates (-SCN - S,

1834 Vogel: Physical Properties and Chemical Constitution.

in sulphides) were in good agreement with those deduced from aliphatic nitriles (Part XVII, this vol., p. 674).

The parachor and refractivity constants for the covalent double bonds $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{N}=\mathrm{O}$ are not identical.

Revised values for the atomic, structural, and group parachors and refractivities so far determined are tabulated; these supersede those of Sugden and of Eisenlohr.

The results, particularly for the molecular refractivities, do not support the view of Phillips, Hunter, and Sutton (J., 1945, 146) that the esters and acid chlorides of the oxy-acids of sulphur and phosphorus contain covalent double bonds.

In the deduction of the parachor and refractivities of the halogens, the author (loc. cit.) has employed compounds in which only one halogen atom is attached to a carbon atom. Other workers have not confined their calculations to such simple compounds : for instance, Eisenlohr (Z. physikal. Chem., 1910, 75, 594) includes ethylidene chloride, " dichloroacetic ester ", ethyl dichloropropionate, chloroform, chloral, butyl chloral, carbon tetrachloride, perchloroethylene, and pentachloroethane, whilst Sugden (" The Parachor and Valency ", Routledge, 1930, p. 37) includes carbon tetrachloride, chloroform, methylene chloride, acetylene tetrachloride, and ethylidene chloride. The possibility that the attachment of two or more halogen atoms or groups to the same carbon atom may be partly responsible for the variations found for the constants appears to have been overlooked by previous investigators; preliminary experiments are now described which have been designed to study the effect of poly-groupings. Alkyl dichloroacetates may be readily prepared in a state of purity; the contributions of Cl_{2} to the physical properties may be computed from the relationship :

$$
\mathrm{Cl}_{2}=\mathrm{CHCl}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}+\mathrm{H}-0 \cdot 5\left(\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}\right)_{2}
$$

The constants for H are from Part IX (loc. cit.) and the experimental data for dialkyl succinates have been taken from Part XIII (this vol., p. 624). The results are given in Table I. It will be noted that the parachor is slightly lower and the refractivities appreciably higher than those deduced for monochloro-compounds, the values for which are included in the table for purposes of comparison. The results obtained for methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2}\right)$, ethylidene chloride $\left(\mathrm{CH}_{3} \cdot \mathrm{CHCl}_{2}+\mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ and acetylene tetrachloride $\left(\mathrm{CHCl}_{2} \cdot \mathrm{CHCl}_{2}+2 \mathrm{H}-2 \mathrm{CH}_{2}\right)$ are also included; the refractivities for these compounds are appreciably lower than those deduced for the dichloroacetates and, in the author's view, these figures are less trustworthy owing to the difficulty of preparing and keeping these polyhalogenated hydrocarbons in a state of purity.

Table I.
Values for Cl_{2} from compounds containing the Cl_{2} grouping.

	Compound.	P.	$R_{\mathbf{O}}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n_{\text {D }}{ }^{20}$
$\mathrm{CHCl}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$		106.9	11.99	$12 \cdot 05$	$12 \cdot 20$	12.31	$99 \cdot 96$
$\mathrm{CHCl}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$		109.3	11.98	12.04	$12 \cdot 19$	$12 \cdot 30$	99.61
$\mathrm{CHCl}_{2} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{n}$		$107 \cdot 2$	12.00	12.05	$12 \cdot 21$	12.31	99.57
$\mathrm{CHCl}_{2} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{n}$		105.9	11.92	11.98	$12 \cdot 12$	12.24	99.72
Mean (Cl_{2})		$107 \cdot 3$	11.973	12.030	12.180	$12 \cdot 290$	99.72
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		107.5	11.68	11.73	11.88	11.98	$100 \cdot 21$
$\mathrm{CH}_{3}{ }^{\text {CHECl }}$		107.9	11.76	11.82	11.97	12.08	98.86
$\mathrm{CHCl}_{2} \cdot \mathrm{CHCl}_{2}$		104.6	11.64	11.68	11.82	11.92	102.29
Mean Cl (from	monohalogen compounds)	$55 \cdot 2$	$5 \cdot 821$	5-844	5.918	$5 \cdot 973$	$50 \cdot 41$

The constants of the Cl_{3} group were obtained from measurements upon alkyl trichloroacetates:

$$
\mathrm{Cl}_{3}=\mathrm{CCl}_{3} \cdot \mathrm{CO}_{2} \mathrm{R}+2 \mathrm{H}-0 \cdot 5\left(\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}\right)_{2}
$$

The results, as well as those for the unstable chloroform $\left(\mathrm{CHCl}_{3}+\mathrm{H}-\mathrm{CH}_{2}\right)$ and the somewhat more stable methylchloroform $\left(\mathrm{CH}_{3} \cdot \mathrm{CCl}_{3}+2 \mathrm{H}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$, are collected in Table II; it will be

Table II.
Values for Cl_{3} from compounds containing the Cl_{3} grouping.

	Compound.	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\mathbf{F}}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{2}$.
$\mathrm{CCl}_{3} \cdot \mathrm{CO}_{2} \mathrm{Me}$		156.7	17.94	18.03	18.28	18.42	149.68
$\mathrm{CCl}_{3} \cdot \mathrm{CO}_{2} \mathrm{Et}$		159.4	$18 \cdot 10$	18.19	18.43	18.58	$148 \cdot 84$
$\mathrm{CCl}_{3} \cdot \mathrm{CO}_{2} \mathrm{Pr}^{n}$		158.6	17.94	18.03	18.28	18.41	$148 \cdot 84$
$\mathrm{CCl}_{3} \cdot \mathrm{CO}_{2} \mathrm{Bu}^{n}$		158.0	17.96	18.06	18.31	18.46	148.93
Mean (Cl_{3})		158.2	17.985	18.078	18.325	$18 \cdot 468$	$149 \cdot 07$
$\mathrm{CHCl}_{3} \mathrm{CH}_{3} \cdot \mathrm{CCl}_{3}$		158.9 160.7	17.67 17.85	18.75 17.96	17.97 18.19	18.12 18.33	149.51 148.06

observed that the parachor is lower and the refractivities are higher per chlorine atom than those for monochloro-compounds. Similar effects are exhibited by carbon tetrachloride $\left(\mathrm{CCl}_{4}-\mathrm{C}\right)$, which gives for $\mathrm{Cl}_{4}: P 212 \cdot 4 ; R_{\mathrm{C}} 23 \cdot 76 ; R_{\mathrm{D}} 23 \cdot 86 ; R_{\mathrm{F}} 24 \cdot 26 ; R_{\mathrm{G}} .24 .42 ; M n_{\mathrm{D}}^{20^{\circ}} 198 \cdot 94$.

Only a few polybromo-compounds have so far been examined, with the following results :

	P	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathcal{G}^{\prime}}$.	$M n_{\text {D }}{ }^{2}{ }^{\circ}$.
Br_{2} from $\mathrm{CH}_{2} \mathrm{Br}_{2}$	$135 \cdot 1$	17.14	17.25	17.55	17.79	247.36
Br_{2} from $\mathrm{CHBr}_{2}{ }^{\text {a }} \mathrm{CHBr}_{2}$	-	$17 \cdot 26$	17.37	17.67	-	259.51
Br_{3} from CHBr_{3}	203.5	26.06	26.24	26.72	27.09	$380 \cdot 68$
Mean Br (from monohalogen compounds)	68.8	$8 \cdot 681$	8.741	8.892	9.011	118.07

No trustworthy conclusions can be drawn from these results alone, particularly from bromoform which is known to be unstable in the pure state, but it would appear that the parachor and the refractivities are lower for compounds with the Br_{2} grouping.

By combining the author's density determinations for methylene iodide with the refractive index measurements by Timmermans and Hennaut-Roland (J. Chim. physique, 1932, 29, 529), the values for I_{2} are found to be : $R_{\mathrm{C}} 27 \cdot 58, R_{\mathrm{D}} 27 \cdot 89$, and $R_{\mathrm{F}} 28 \cdot 73$. The constants determined from monoiodo-compounds (Part XIV, loc. cit.) were : $R_{\mathrm{C}} 13 \cdot 825, R_{\mathrm{D}} 13 \cdot 954$, and $R_{\mathrm{F}} 14 \cdot 310$.

In Part XII (this vol., p. 616) it was shown that the constants for oxygen in dialkyl ethers were greater than those in acetals, $\mathrm{CHR}^{\prime}(\mathrm{OR})_{2}$; this is probably another example of the influence of two groupings attached to the same carbon atom upon the physical properties. The acetals $\mathrm{CH}_{2}(\mathrm{OR})_{2}$ are of particular interest in that they permit the calculation of the contributions of (OR) 2 to the physical constants by mere subtraction of the constants for CH_{2} (Part IX, loc. cit.). To investigate the effect of three alkoxyl groups attached to the same carbon atom, the physical properties of three trialkyl orthoformates were measured and the values for $\geqslant \mathrm{CH}$ computed from:

$$
\geqslant \mathrm{CH}=\mathrm{CH}(\mathrm{OR})_{3}-3(\mathrm{OR})
$$

The results are given in Table III; it will be noted that the mean values for $\geqslant \mathrm{CH}$ thus obtained are lower than those for $(\mathrm{C}+\mathrm{H})$ derived from aliphatic hydrocarbons (Part IX, loc. cit.).

Table III.
Values for $\geqslant \mathrm{CH}$ from trialkyl orthoformates, $\mathrm{CH}(\mathrm{OR})_{3}$.

	P.	$R_{\text {d }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20^{\circ}}$.
$\mathrm{CH}(\mathrm{OEt})_{3}$	$22 \cdot 1$	$3 \cdot 46$	$3 \cdot 48$	$3 \cdot 51$	$3 \cdot 53$	$22 \cdot 41$
$\mathrm{CH}\left(\mathrm{OPr}^{\text {n }}\right)_{3}$	$20 \cdot 4$	$3 \cdot 52$	$3 \cdot 55$	$3 \cdot 58$	$3 \cdot 61$	$22 \cdot 52$
$\mathrm{CH}\left(\mathrm{OBu}^{n}\right)_{3}$	$19 \cdot 3$	$3 \cdot 51$	$3 \cdot 55$	$3 \cdot 56$	$3 \cdot 58$	$22 \cdot 48$
Mean ($=\mathrm{CH}$)	$20 \cdot 6$	$3 \cdot 497$	$3 \cdot 527$	3.550	3.573	$22 \cdot 47$
$\mathrm{C}+\mathrm{H}$ (Part IX)	$24 \cdot 3$	$3 \cdot 598$	$3 \cdot 619$	$3 \cdot 644$	$3 \cdot 695$	$23 \cdot 15$

The parachors and the refractivities of thionyl chloride, sulphuryl chloride, phosphorus trichloride, and phosphorus oxychloride were determined primarily with the object of obtaining new evidence on the nature of the oxy-bond from considerations of the molecular refractivities. The results are collected below, including the differences $\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}-\mathrm{SOCl}_{2}\right)$ and $\left(\mathrm{POCl}_{3}-\mathrm{PCl}_{3}\right)$.

	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	R_{G}	$M n^{20^{\circ}}$.
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$	188.4	21.31	$21 \cdot 43$	21.70	$21 \cdot 92$	194.80
SOCl_{2}	$174 \cdot 7$	21.95	$22 \cdot 12$	22.56	22.98	$180 \cdot 06$
$\mathrm{O}\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}-\mathrm{SOCl}_{2}\right)$	$13 \cdot 7$	-0.64	-0.69	-0.86	-1.06	14.74
POCl_{3}	218.6	$24 \cdot 97$	25.05	$25 \cdot 36$	25.59	$224 \cdot 03$
PCl_{3}	201.6	26.08	$26 \cdot 27$	$26 \cdot 74$	$27 \cdot 11$	208.04
$\mathrm{O}\left(\mathrm{POCl}_{3}-\mathrm{PCl}_{3}\right)$	17.0	-1.11	-1.22	-1.38	-1.52	15.99

The negative values for the refractivities are particularly noteworthy. Similar calculations have been made from the data for dialkyl sulphates and dialkyl sulphites $\mathrm{R}_{2} \mathrm{SO}_{4}-\mathrm{R}_{2} \mathrm{SO}_{3}$ (Part VII, $l o c . c i t$.) and the results are presented in Table IV. These figures are more trustworthy owing to

Table IV.
Constants for oxygen from $\mathrm{R}_{2} \mathrm{SO}_{4}-\mathrm{R}_{2} \mathrm{SO}_{3}$.

	R.	P.	R_{0}.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{2}$
Me.		18.2	-0.07	-0.08	$-0 \cdot 15$	$-0 \cdot 19$	19.79
Et.		18.8	-0.11	-0.14	-0.20	-0.26	$20 \cdot 37$
Pr^{n}		$16 \cdot 8$	-0.30	-0.33	$-0 \cdot 40$	-0.46	$20 \cdot 80$
Bu*		17.4	-0.21	-0.25	-0.32	-0.36	$23 \cdot 40$

the difficulties attending measurements with acid chlorides. The only refractivity data available for trialkyl phosphites* are those of Jones, Davies, and Dyke (J. Physical Chem., 1933, 37, 583) for triethyl and tri- n-amyl phosphites; these lead to the following values for $\mathrm{R}_{3} \mathrm{PO}_{4}$ (VII, 44 and VII, 49) $-\mathrm{R}_{3} \mathrm{PO}_{3}$:

$$
\begin{array}{lccc}
& R_{\mathrm{G}} & R_{\mathrm{D}} & R_{\mathrm{F}} . \\
\mathrm{Et}_{3} \mathrm{PO}_{4}-\mathrm{Et}_{3} \mathrm{PO}_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & -1 \cdot 13 & -1 \cdot 23 & -1 \cdot 36 \\
\mathrm{Am}_{3}{ }_{3} \mathrm{PO}_{4}-\mathrm{Am}_{3}{ }_{3} \mathrm{PO}_{3} \ldots \ldots \ldots \ldots \ldots \ldots & -1 \cdot 29 & -1.33 & -1 \cdot 48
\end{array}
$$

The constants for $>\mathrm{SO}_{2}$ in dialkyl sulphates may be computed from the relationship $>\mathrm{SO}_{2}=\mathrm{SO}_{2}(\mathrm{OR})_{2}-\left\{\mathrm{CH}_{2}(\mathrm{OR})_{2}-\mathrm{CH}_{2}\right\}$, and those for $>\mathrm{SO}$ in dialkyl sulphites may be similarly calculated from $>\mathrm{SO}=\mathrm{SO}(\mathrm{OR})_{2}-\left\{\mathrm{CH}_{2}(\mathrm{OR})_{2}-\mathrm{CH}_{2}\right\}$. The data for the acetals are given in Part XII (loc. cit.). The results are collected in Tables V and VI. The differences

Table V.
Values for $>\mathrm{SO}_{2}$ from dialkyl sulphates, $\mathrm{SO}_{2}(\mathrm{OR})_{2}$.

	Compound.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	R_{F}.	$R_{\mathbf{G}^{\prime}}$.	$M n_{\text {D }}^{20^{\circ}}$.
$\mathrm{SO}_{2}(\mathrm{OMe})_{2}$		87.6	$7 \cdot 79$	$7 \cdot 83$	$7 \cdot 87$	$7 \cdot 91$	$92 \cdot 64$
$\mathrm{SO}_{2}(\mathrm{OEt})_{2}$		87.5	$7 \cdot 87$	$7 \cdot 89$	7.94	$7 \cdot 98$	$93 \cdot 44$
$\mathrm{SO}_{2}\left(\mathrm{OPr}^{n}\right)_{2}$		$83 \cdot 8$	$7 \cdot 77$	$7 \cdot 81$	$7 \cdot 85$	$7 \cdot 88$	$94 \cdot 08$
$\mathrm{SO}_{2}\left(\mathrm{OBu}^{n}\right)_{2}$		$82 \cdot 6$	$7 \cdot 78$	$7 \cdot 82$	$7 \cdot 85$	$7 \cdot 90$	94.19
Mean ($>\mathrm{SO}_{2}$)		$85 \cdot 4$	7.803	7.838	7.878	7.918	93.59
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$		$78 \cdot 0$	$9 \cdot 67$	$9 \cdot 75$	$9 \cdot 86$	9.97	93.98

Table VI.
Values for $>\mathrm{SO}$ from dialkyl sulphites, $\mathrm{SO}(\mathrm{OR})_{2}$.

Compound.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{SO}(\mathrm{OMe})_{2}$	$69 \cdot 4$	$7 \cdot 86$	7.91	$8 \cdot 02$	$8 \cdot 10$	72.85
$\mathrm{SO}(\mathrm{OEt})_{2}$	68.7	7.98	$8 \cdot 03$	$8 \cdot 14$	$8 \cdot 24$	73.07
$\mathrm{SO}\left(\mathrm{OPr}^{n}\right)_{2}$	$67 \cdot 0$	$8 \cdot 07$	$8 \cdot 14$	$8 \cdot 25$	$8 \cdot 34$	$73 \cdot 28$
$\mathrm{SO}\left(\mathrm{OPr}^{i}\right)_{2}$ *	$68 \cdot 3$	$8 \cdot 13$	$8 \cdot 21$	$8 \cdot 32$	$8 \cdot 42$	$72 \cdot 79$
$\mathrm{SO}\left(\mathrm{OBu}^{n}\right)_{2}$	$65 \cdot 2$	7.99	8.07	$8 \cdot 17$	$8 \cdot 26$	73.33**
$\mathrm{SO}\left(\mathrm{OBu}^{i}\right)_{2}$	$66 \cdot 5$	7.99	$8 \cdot 06$	$8 \cdot 16$	$8 \cdot 26$	$73 \cdot 39$
$\mathrm{SO}\left(\mathrm{OAm}^{n}\right)_{2}$	$65 \cdot 6$	8.01	8.07	$8 \cdot 21$	$8 \cdot 28$	$73 \cdot 23$
Mean ($>$ SO excluding *)	67-1	7.983	8.046	$8 \cdot 158$	8.247	$73 \cdot 19$
SOCl_{2}	64-3	$10 \cdot 31$	$10 \cdot 44$	$10 \cdot 72$	$10 \cdot 82$	$79 \cdot 24$

** $M n_{\mathrm{D}}^{20{ }^{\circ}}$ for $\mathrm{Bu}^{n}{ }_{2} \mathrm{SO}_{3}$ in VII, 34 should be 278.01 and not 275.07 .
$>\mathrm{SO}_{2}->\mathrm{SO}$ (representing the mean contributions of the additional oxygen atom in passing from dialkyl sulphites to dialkyl sulphates), $>\mathrm{SO}-\mathrm{S}$ (sulphides; Part XXI, this vol., p. 1820) and $>\mathrm{SO}_{2}-\mathrm{S}$ (sulphides) are tabulated below; these are compared with the constants for the covalent double bonds in ketones, i.e., with $>\mathrm{CO}$ (ketones; Part XI, loc. cit.) - C (Part IX, loc. cit.).

	P.	$R_{\text {C }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.	$M n_{\text {d }}^{20^{\circ}}$.
$>\mathrm{SO}_{2}->\mathrm{SO}$	$18 \cdot 3$	-0.180	-0.208	-0.280	-0.329	$20 \cdot 40$
$>\mathrm{SO}^{2}-\mathrm{S}$ (sulphides)	$18 \cdot 5$	$0 \cdot 131$	$0 \cdot 125$	0.077	0.014	$20 \cdot 33$
$>\mathrm{SO}_{2}-\mathrm{S}$ (sulphides)	$36 \cdot 8$	-0.049	-0.083	-0.203	-0.315	$40 \cdot 73$
$>\mathrm{CO}^{2}$ (ketones) - C ..	$36 \cdot 5$	$2 \cdot 072$	$2 \cdot 077$	2-122	2-117	16.68

The constants for the $\geqslant \mathrm{PO}$ grouping were calculated from the relationship $\rangle \mathrm{PO}=$ $\mathrm{PO}(\mathrm{OR})_{3}-1.5\left\{\mathrm{CH}_{2}(\mathrm{OR})_{2}-\mathrm{CH}_{2}\right\}$. The results, utilising the data of Part VII (loc. cit.) upon trialkyl orthophosphates, are in Table VII; the individual variations are somewhat larger than those found for alkyl sulphites and sulphates.

The experimental data required for the calculation of the parachor and the refractivities of phosphorus are scanty : approximate values for the parachor may be obtained from the author's measurements upon phosphorus trichloride and tribromide, and for the refractivities $R_{\mathrm{C}}, R_{\mathrm{D}}$, and

[^0]Table VII.
Values for $\rangle \mathrm{PO}$ from trialkyl orthophosphates, $\mathrm{PO}(\mathrm{OR})_{\mathbf{3}}$.

	Compound.	P.	$R_{\mathbf{C}}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{PO}(\mathrm{OMe})_{3}$		60.7	5.87*	$5 \cdot 91$	$5 \cdot 94$	-	72.05
$\mathrm{PO}(\mathrm{OEt})_{3}$.		$56 \cdot 5$	5.93	$5 \cdot 95$	$5 \cdot 98$	6.03	$71 \cdot 63$
$\mathrm{PO}\left(\mathrm{OPr}^{n}\right)_{3}$		$53 \cdot 3$	$5 \cdot 89$	5.93	$5 \cdot 96$	$6 \cdot 01$	$72 \cdot 41$
$\mathrm{PO}\left(\mathrm{OPr}^{\text {i }}\right)_{3}{ }^{3}$		$50 \cdot 6$	$6 \cdot 03$	$6 \cdot 08$	$6 \cdot 10$	$6 \cdot 16$	$71 \cdot 62$
$\mathrm{PO}\left(\mathrm{OBu}^{n}\right)_{3}$		$48 \cdot 2$	6.03	$6.07 \dagger$	$6 \cdot 09$	$6 \cdot 11$	$72 \cdot 52$
$\mathrm{PO}\left(\mathrm{OBu}^{i}\right)_{3}$		$49 \cdot 0$	$5 \cdot 72$	$5 \cdot 76$	$5 \cdot 78$	$5 \cdot 82 \ddagger$	$72 \cdot 27$
$\mathrm{PO}\left(\mathrm{OAm}^{n}\right)_{3}$			$5 \cdot 61$	$5 \cdot 64$	$5 \cdot 68$	$5 \cdot 75$	72.43
Mean ($\geqslant \mathrm{PO}$)		$53 \cdot 1$	$5 \cdot 87$	$5 \cdot 91$	$5 \cdot 93$	5.98	$72 \cdot 13$
POCl_{3}		$60 \cdot 4$	6.98	6.97	$7 \cdot 03$	7-12	74.96

* Arithmetical error in VII, 43; for $R_{\mathrm{G}} 27 \cdot 67$, read $R_{\mathrm{C}} \mathbf{2 7 \cdot 6 2}$.
\dagger Arithmetical error in VII, 47 ; for $R_{\mathrm{D}} 69.57$, read $R_{\mathrm{D}} 69.73$.
\ddagger Arithmetical error in VII, 48; for $R_{G^{\prime}} 70 \cdot 68$, read $R_{G^{\prime}} 70 \cdot 74$.
R_{F} from the measurements upon three trialkyl phosphines by Jones, Davies, and Dyke (loc. cit.). These lead to the following results.

	Compound.	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.
PCl_{3}		$36 \cdot 0$	$8 \cdot 62$	$8 \cdot 75$	8.98	$9 \cdot 19$
PBr_{3}		$39 \cdot 3$	-	8.85	-	-
$\mathrm{P}\left(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{2}\right)_{3}$.		-	8.93	9.04	$9 \cdot 32$	-
$\mathrm{P}\left(\mathrm{C}_{4} \mathrm{H}_{9}{ }^{n}\right)_{3}$		-	$8 \cdot 97$	9.07	$9 \cdot 30$	-
$\mathrm{P}\left(\mathrm{C}_{5} \mathrm{H}_{11}{ }^{\text {n }}\right)_{3}$		-	$8 \cdot 82$	8.92	$9 \cdot 14$	-
Mean (P) .		$37 \cdot 7$	8.91	9.01	$9 \cdot 25$	-

If these constants for phosphorus be subtracted from the mean figures for $\rangle P O$, the following values for $\geqslant \mathrm{PO}-\mathrm{P}$ are obtained : $P 15 \cdot 4 ; R_{\mathrm{C}}-3.04 ; R_{\mathrm{D}}-3 \cdot 10 ; R_{\mathrm{F}}-3.32$. The large negative values for the refractivities are particularly noteworthy.

The constants of the $>\mathrm{PO}_{4}$ grouping in trialkyl orthophosphates, the $>\mathrm{SO}_{3}$ grouping in dialkyl sulphites, and of the $>\mathrm{SO}_{4}$ grouping in dialkyl sulphates have been computed in the usual manner from the data given in Part VII (loc. cit.) by subtracting the values for the alkyl groups (Part XI, loc. cit.) ; the values of the differences $-\mathrm{PO}_{4}-\mathrm{P},>\mathrm{SO}_{3}-\mathrm{S}$ (sulphides) and $>\mathrm{SO}_{4}-\mathrm{S}$ (sulphides) are included in Tables VIII, IX, and X respectively for purposes of comparison.

Table VIII.

Values for $\geqslant \mathrm{PO}_{4}$ from trialkyl orthophosphates, $\mathrm{R}_{3} \mathrm{PO}_{4}$.

Compound.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{Me}_{3} \mathrm{PO}_{4}$.	120.0*	10.71	10.78	10.83	-	141.20
$\mathrm{Et}_{3} \mathrm{PO}_{4}$	$113 \cdot 8$	$10 \cdot 82$	10.87	10.94	11.04	139.03
$\mathrm{Pr}_{3} \mathrm{PO}_{4}$	109.5	$10 \cdot 73$	10.76	$10 \cdot 83$	10.91	$139 \cdot 89$
$\mathrm{Pr}_{3}{ }_{3} \mathrm{PO}_{4}$	108.5	$10 \cdot 84$	$10 \cdot 86$	10.90	$10 \cdot 99$	$138 \cdot 36$
$\mathrm{Bu}_{3} \mathrm{PO}_{4}$	103.4	10.94	10.97	11.03	11.08	140.08
$\mathrm{Bu}^{i} \mathrm{PO}_{4}$	103.9	$10 \cdot 63$	$10 \cdot 65$	$10 \cdot 70$	10.77	139.38
$\mathrm{Am}_{3} \mathrm{PO}_{4}$	-	10.46	$10 \cdot 49$	10.54	$10 \cdot 64$	$140 \cdot 21$
Mean $\geqslant \mathrm{PO}_{4}$ (excluding ${ }^{*}$)	107.8	10.733	10.769	10.821	10.905	139.74
$\geqslant \mathrm{PO}_{4}-\mathrm{P}$	$70 \cdot 0$].82	$1 \cdot 76$	1.57	-	-

Table IX.
Values for $>\mathrm{SO}_{3}$ from dialkyl sulphites, $\mathrm{R}_{2} \mathrm{SO}_{3}$.

Compound.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20^{\circ}}$.
$\mathrm{Me}_{2} \mathrm{SO}_{3}$	108.9	11.09	11.15	11.28	11.41	118.95
$\mathrm{Et}_{2} \mathrm{SO}_{3}$	106.9	11.24	11.31	11.44	11.58	118.06
$\mathrm{Pr}^{n}{ }_{2} \mathrm{SO}_{3}$	104-5	11.30	11.36	11.50	11.61	118.27
$\mathrm{Pr}^{i}{ }_{2} \mathrm{SO}_{3}$	106.9	11.34	11.40	11.52	11.64	117.28
$\mathrm{Bu}_{2} \mathrm{SO}_{3}$	$107 \cdot 0$	11.26	11.34	11.46	11.57	118.40
$\mathrm{Bu}^{i} \mathrm{SO}_{3}$	103-1	11.26	11.32	11.44	11.56	118.13
$\mathrm{Am}^{n}{ }_{2} \mathrm{SO}_{3}$	103.1	11.21	11.30	11.45	11.54	118.42
Mean $>\mathrm{SO}_{3}$ (excluding ${ }^{*}$)	$105 \cdot 3$	11.273	11.338	11.468	$11 \cdot 550$	118.09
$>\mathrm{SO}_{3}-\mathrm{S}$ (sulphides)	$56 \cdot 7$	$3 \cdot 421$	$3 \cdot 417$	3-387	3.317	$65 \cdot 23$

Table X.						
Values for $>\mathrm{SO}_{4}$ from dialkyl sulphates, $\mathrm{R}_{2} \mathrm{SO}_{4}$.						
Compound.	P.	R_{c}.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n_{\text {d }}^{20^{\circ}}$.
$\mathrm{Me}_{2} \mathrm{SO}_{4}$	127.1	11.02	11.07	$11 \cdot 13$	$11 \cdot 22$	138.74
$\mathrm{Et}_{2} \mathrm{SO}_{4}$	125.7	11.13	$11 \cdot 17$	11.24	11.32	138.37
$\mathrm{Pr}^{n} \mathrm{n}^{\text {SO}}{ }_{4}$.	$121 \cdot 3$	11.00	11.03	11-10	$11 \cdot 15$	139.07
$\mathrm{Bu}^{2} \mathrm{SO}_{4}$	119.4	11.05	11.09	$11 \cdot 14$	11.21	$139 \cdot 26$
Mean $>\mathrm{SO}_{4}$.	123.4	11.050	11.090	11-153	11.225	138.86
$>\mathrm{SO}_{4}-\mathrm{S}$ (sulphides)	74.8	3•198	3-169	3.072	2.992	86.00

A comparison of the physical constants of the \rangle PO grouping with those of the - NO grouping (which is generally accepted to contain a covalent double bond) in nitrosoamines has been made. The constants for this grouping are readily determined with the aid of the experimental data for secondary aliphatic amines (Part XXII, preceding paper) :

$$
-\mathrm{NO}=\mathrm{R}_{2} \mathrm{~N} \cdot \mathrm{NO}+\mathrm{H}-\mathrm{R}_{2} \mathrm{NH}
$$

The results are given in Table XI, as are also the values of -NO - N (tertiary aliphatic amines) (Part XXII, loc. cit.), of O (ethers) (Part XII, loc. cit.) + F (carbon to carbon) (Part XVI, this vol., p. 658), and of CO (ketones) (Part XI, loc. cit.) - C. It will be noted that the differences of the refractivities are positive and of the same order as $(O+F)$ and $(\mathrm{CO}-\mathrm{C})$. [Slightly different vales for ($\mathrm{NO}-\mathrm{O}$) are obtained if the constants for N derived from NH_{2} (primary aliphatic amines) and NH (secondary aliphatic amines) are employed.] Exact agreement is, indeed, not to be expected as there is no real evidence that the constants for the covalent double bonds are independent of the containing atoms. Sugden, Reed, and Wilkins ($J ., 1925,127,1525$) have stated that the same value is found for the parachor for double bonds between carbon and carbon, carbon and oxygen, carbon and sulphur, and nitrogen and oxygen; this general statement cannot be accepted (see also below) since it has been shown in earlier papers of this series that the parachors (and refractivities) of sulphur, nitrogen, and oxygen vary with the nature of the other atoms attached to these elements.

Table XI.
Values of the $-\mathrm{N}=\mathrm{O}$ grouping from dialkyl nitrosoamines, $\mathrm{R}_{2} \mathrm{~N} \cdot \mathrm{NO}$.

Compound.	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	R_{F}.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20^{\circ}}{ }^{\circ}$.
$\mathrm{Et}_{2} \mathrm{~N} \cdot \mathrm{NO}$	$55 \cdot 2$	$5 \cdot 10$	5•16	$5 \cdot 35$	$5 \cdot 53$	$42 \cdot 91$
$\mathrm{Pr}^{n} \mathrm{~N} \cdot \mathrm{NO}$	$54 \cdot 6$	5•17	$5 \cdot 25$	$5 \cdot 44$	$5 \cdot 63$	$43 \cdot 23$
$\mathrm{Bu}^{n}{ }_{2} \mathrm{~N} \cdot \mathrm{NO}$	$50 \cdot 4$	5•12	5-19	$5 \cdot 40$	$5 \cdot 57$	$43 \cdot 27$
Mean - $\mathrm{N}=\mathrm{O}$.	$53 \cdot 4$	5-130	5.200	$5 \cdot 397$	$5 \cdot 577$	$43 \cdot 14$
-NO - N (tertiary aliphatic amines)	$46 \cdot 2$	$2 \cdot 432$	$2 \cdot 456$	$2 \cdot 577$	2.663	18.77
O (ethers) +F (carbon to carbon)	$39 \cdot 7$	$3 \cdot 298$	$3 \cdot 339$	$3 \cdot 458$	$3 \cdot 525$	$16 \cdot 67$
CO (ketones) - C	$35 \cdot 8$	$2 \cdot 007$	$2 \cdot 010$	$2 \cdot 053$	2.047	$16 \cdot 70$

The new determination of the refractivities at 20° and the parachors of the dialkyl nitrosoamines have been employed in the computation of the constants of the nitrosamine $-\mathrm{N} \cdot \mathrm{NO}$ grouping; the results are presented in Table XII. The constants for phenyl-methyl-

Table XII.
Values for $-\mathrm{N} \cdot \mathrm{NO}$ from dialkyl nitrosoamines, $\mathrm{R}_{2} \mathrm{~N} \cdot \mathrm{NO}$.

	Compound.	P.	$R_{\text {C }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{20}$.
$\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{NO}$		$73 \cdot 1$	$7 \cdot 85$	$7 \cdot 96$	8.20	$8 \cdot 46$	$70 \cdot 12$
$\mathrm{Et}_{2} \mathrm{~N} \cdot \mathrm{NO}$		$69 \cdot 0$	7.73	$7 \cdot 83$	8.08	$8 \cdot 35$	$69 \cdot 43$
$\mathrm{Pr}_{2} \mathrm{~N} \cdot \mathrm{NO}$		$66 \cdot 9$	$7 \cdot 71$	$7 \cdot 80$	8.06	$8 \cdot 31$	$69 \cdot 47$
$\mathrm{Bu}^{n}{ }_{2} \mathrm{~N} \cdot \mathrm{NO}$		$62 \cdot 9$	$7 \cdot 70$	$7 \cdot 81$	8.06	$8 \cdot 31$	$69 \cdot 44$
Mean - $\mathrm{N} \cdot \mathrm{NO}$		$68 \cdot 0$	7.748	7.850	$8 \cdot 100$	$8 \cdot 358$	$69 \cdot 67$
$\mathrm{NPh}(\mathrm{NO}) \mathrm{Me}$		$67 \cdot 8$	8.68	$8 \cdot 87$	$9 \cdot 48$	-	$76 \cdot 90$
NPh(NO)Et.		66.5	$8 \cdot 66$	$8 \cdot 86$	$9 \cdot 45$	-	$\mathbf{7 5} \mathbf{4 2}$

and -ethyl-nitrosoamines (XXII, 528 and XXII, 530) were derived by subtraction of the figures for methyl- and ethyl-benzene respectively (Part X, this vol., p. 607).

The parachors and refractivities of a number of nitro-paraffins and of alkyl nitrites have been determined, and the constants for the nitro-group and the nitrite group have been computed in the usual manner. The results are collected in Tables XIII and XIV, respectively. In

Table XIII.
Values for $-\mathrm{NO}_{2}$ from nitro-paraffins, $\mathrm{R} \cdot \mathrm{NO}_{2}$.

Compound.	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{20}$.
MeNO_{2}	$77 \cdot 2$	6.65	6.71	$6 \cdot 82$	$6 \cdot 94$	$65 \cdot 42$
EtNO_{2}	$75 \cdot 6$	$6 \cdot 67$	6.72	$6 \cdot 84$	6.94	$65 \cdot 77$
$\mathrm{Pr}^{n} \mathrm{NO}_{2}$	$73 \cdot 8$	$6 \cdot 60$	$6 \cdot 67$	6.76	6.91	65.61
$\mathrm{Pr}^{\mathbf{N} \mathrm{NO}_{2} \text { * }}$	$76 \cdot 0$	$6 \cdot 57$	$6 \cdot 61$	6.72	$6 \cdot 82$	65.28
$\mathrm{Bu}^{n} \mathrm{NO}_{2}$	$72 \cdot 5$	6.70	6.74	6.85	6.95	$65 \cdot 62$
$\mathrm{Am}^{n} \mathrm{NO}_{2}$	71.9	6.67	6.71	6.82	6.92	65.60
$\mathrm{C}_{6} \mathrm{H}_{13}{ }^{n} \mathrm{NO}_{2}$	$71 \cdot 6$	6.68	6.73	6.85	6.95	$65 \cdot 63$
Mean $-\mathrm{NO}_{2}$ (excluding *)	$73 \cdot 8$	6.662	6.713	6.823	6.918	$65 \cdot 61$
$\mathrm{Ph} \cdot \mathrm{NO}_{2}$	$75 \cdot 6$	$7 \cdot 24$	$7 \cdot 36$	$7 \cdot 71$	8.08	$69 \cdot 10$

Table XIV.
Values for -ONO from alkyl nitrites, $\mathrm{R} \cdot \mathrm{O} \cdot \mathrm{NO}$.

	Compound.	P.	$R_{\mathbf{C}}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{Bu}^{n \cdot \mathrm{O}} \mathrm{N} \mathrm{NO}$		$75 \cdot 6$	$7 \cdot 23$	$7 \cdot 28$	$7 \cdot 42$	$7 \cdot 55$	62-17
$\mathrm{Am}^{n \cdot \mathrm{O}} \cdot \mathrm{NO}$		$74 \cdot 9$	$7 \cdot 14$	$7 \cdot 19$	$7 \cdot 32$	$7 \cdot 46$	$62 \cdot 30$
$\mathrm{C}_{6} \mathrm{H}_{13}{ }^{n} \cdot \mathrm{O} \cdot \mathrm{NO}$		$75 \cdot 4$	$7 \cdot 19$	$7 \cdot 24$	$7 \cdot 39$	$7 \cdot 51$	$62 \cdot 34$
Mean -O•NO		$75 \cdot 3$	7-187	$7 \cdot 237$	$7 \cdot 377$	$7 \cdot 507$	$62 \cdot 27$

comparing the mean constants for the nitro- and the nitrite group, it will be observed that the parachors differ only slightly but the refractivities of the former are appreciably less than those of the latter.

The constants for the nitrate group have been deduced from measurements upon three alkyl nitrates and are given in Table XV. The values for $-\mathrm{NO}_{3}--\mathrm{O} \cdot \mathrm{NO}$ (nitrite) and for $-\mathrm{NO}_{3}--\mathrm{NO}_{2}$ (nitro) are included in the table; the former differences are of particular interest in that they give the influence of the additional oxygen, presumably attached by a co-ordinate link, in passing from alkyl nitrites to alkyl nitrates. It will be noted that these figures differ considerably from those obtained from alkyl sulphates - alkyl sulphites (Table IV) or $>\mathrm{SO}_{2}->\mathrm{SO}$.

Table XV.
Values for $-\mathrm{NO}_{3}$ from alkyl nitrates, RNO_{3}.

Compound	P.	$R_{\mathbf{0}}$.	$R_{\text {D }}$.	$R_{\mathbf{F}}$.	$R_{\mathbf{G}^{\prime}}$.	$M n_{\text {d }}^{20}{ }^{\circ}$.
EtNO_{3}	93.8	$8 \cdot 92$	$8 \cdot 98$	9-12	$9 \cdot 25$	$87 \cdot 44$
$\mathrm{Pr}^{n} \mathrm{NO}_{3}$	$92 \cdot 0$	9.01	$9 \cdot 06$	$9 \cdot 20$	$9 \cdot 32$	87.65
$\mathrm{Bu}^{n} \mathrm{NO}_{3}$	$92 \cdot 8$	8.99	9.05	$9 \cdot 19$	$9 \cdot 31$	87.73
Mean - NO_{3}	$92 \cdot 9$	8.973	9.030	9•170	$9 \cdot 293$	87.59
$-\mathrm{NO}_{3}--\mathrm{O} \cdot \mathrm{NO}$ (nitrite)	17.6	1.786	1.793	1.793	1.786	$25 \cdot 32$
$-\mathrm{NO}_{3}--\mathrm{NO}_{2}$ (nitro)	$19 \cdot 1$	$2 \cdot 311$	$2 \cdot 327$	$2 \cdot 347$	$2 \cdot 375$	21.98

The parachors and the refractivities of a number of dialkyl carbonates have been determined and the constants of the $>\mathrm{CO}_{3}$ group have been computed in the usual manner. The results are given in Table XVI. The new data may be employed to provide evidence for the usual formula

Table XVI.
Values for- $-\mathrm{CO}_{3}$ from dialkyl carbonates, $\mathrm{R}_{2} \mathrm{CO}_{3}$.

	Compound.	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{\circ}$.
$\mathrm{Me}_{2} \mathrm{CO}_{3}$		$85 \cdot 0$	7-62	$7 \cdot 66$	$7 \cdot 72$	$7 \cdot 80$	$87 \cdot 02$
$\mathrm{Et}_{2} \mathrm{CO}_{3}$		$83 \cdot 6$	$7 \cdot 67$	7.71	$7 \cdot 76$	$7 \cdot 84$	85.99
$\mathrm{Pr}_{2} \mathrm{CO}_{3}$		$82 \cdot 3$	$7 \cdot 67$	$7 \cdot 71$	$7 \cdot 78$	$7 \cdot 85$	$86 \cdot 26$
$\mathrm{Bu}^{2} \mathrm{CO}_{3}$		$80 \cdot 2$	$7 \cdot 64$	$7 \cdot 67$	$7 \cdot 73$	$7 \cdot 76$	$86 \cdot 35$
$\mathrm{Bu}^{2} \mathrm{CO}_{3}$		$80 \cdot 8$	$7 \cdot 71$	$7 \cdot 73$	$7 \cdot 78$	$7 \cdot 84$	$86 \cdot 12$
Mean $>$ C		$82 \cdot 4$	$7 \cdot 662$	$7 \cdot 696$	7.754	$7 \cdot 818$	$86 \cdot 35$

of dialkyl carbonates $(\mathrm{RO})_{2} \mathrm{C}=\mathrm{O}$. The constants for the $>\mathrm{CO}$ grouping may be calculated by subtraction of the values for $(\mathrm{OR})_{2}$, which are readily derived from acetals $\mathrm{CH}_{2}(\mathrm{OR})_{2}-\mathrm{CH}_{2}$. The constants for $>\mathrm{CO}$ thus obtained are in reasonable agreement with those for $>\mathrm{CO}$ deduced from dialkyl ketones CORR' (Part XI, loc. cit.).

Table XVII.
V alues for $>\mathrm{CO}$ from dialkyl carbonates, $\mathrm{CO}(\mathrm{OR})_{2}$.

Determinations of the parachors and refractivities of a number of alkyl thiocyanates and isothiocyanates have been made with the object of deducing the constants of these groups. The results are collected in Tables XVIII and XIX. It is now generally accepted that thiocyanates

Table XVIII.
Values for -SCN from alkyl thiocyanates, R•SCN.

	Compound.	P.	$R_{\text {d }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{2}{ }^{\circ}$.
MeSCN.		113.6	13.18	13.28	$13 \cdot 49$	13.68	89.23
EtSCN		$112 \cdot 0$	$13 \cdot 33$	$13 \cdot 42$	$13 \cdot 65$	13.82	88.77
$\mathrm{Pr}^{n} \mathrm{SCN}$.		111.7	$13 \cdot 34$	$13 \cdot 42$	13.65	13.84	88.77
BunsCN		110.7	$13 \cdot 39$	13.48	$13 \cdot 71$	13.89	88.22
Mean -SCN		112.0	13.313	$13 \cdot 400$	$13 \cdot 603$	13.808	88.90

Table XIX.
Values for -NCS from alkyl isothiocyanates, R•NCS.

have the structure $\mathrm{R}-\mathrm{S}-\mathrm{C} \equiv \mathrm{N}$ and isothiocyanates $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{S}$. Subtraction of the constants for S (in sulphides) (Part XXI, loc. cit.) from the mean values for the thiocyanate group $-S C N$ gives the following values for the residual -CN ; these are in reasonable agreement with the constants already deduced (Part XVII, loc. cit.) for $-\mathrm{C} \equiv \mathrm{N}$ for alkyl cyanides.

The refractivities and parachors of a number of alkyl xanthates have been determined with the object of deducing the constants for the $>\mathrm{C}=\mathrm{S}$ grouping. It may be noted that the physical properties (parachor and refractivites) of ethyl S-n-butylxanthate $\mathrm{CS}(\mathrm{OEt}) \cdot \mathrm{SBu}^{n}$, n-butyl S-ethylxanthate $\mathrm{CS}\left(\mathrm{OBu}^{n}\right) \cdot \mathrm{SEt}$ and of di-n-propyl xanthate are substantially identical. The constants for the $>$ CS grouping were computed from the data for disulphides (Part VII, loc. cit.) and acetals (Part XII, loc. cit.) thus :

$$
>\mathrm{CS}=\mathrm{CS}(\mathrm{OR}) \mathrm{SR}-\left[0.5 \mathrm{R}_{2} \mathrm{~S}_{2}+0 \cdot 5\left\{\mathrm{CH}_{2}(\mathrm{OR})_{2}-\mathrm{CH}_{2}\right\}\right]
$$

The results are summarised in Table XX.
Table XX.
Values for $>\mathrm{CS}$ from alkyl xanthates, $\mathrm{CS}(\mathrm{OR}) \cdot \mathrm{SR}$.

	Compound.	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.	$M n^{20}{ }^{\circ}$.
CS(OEt) \cdot SEt		$75 \cdot 8$	12.57	$12 \cdot 77$	13.35	13.88	77.09
$\mathrm{CS}\left(\mathrm{OPr}^{n}\right) \cdot \mathrm{SPr}^{n}$		$74 \cdot 6$	12.96	$13 \cdot 19$	$13 \cdot 80$	$14 \cdot 37$	$77 \cdot 41$
$\mathrm{CS}\left(\mathrm{OBu}^{n}\right) \cdot \mathrm{SBu}^{n}$		$72 \cdot 3$	12.99	13.24	13.86	14.42	77-11
Mean $>\mathrm{C}=\mathrm{S}$		$74 \cdot 2$	$12 \cdot 84$	13.07	13.67	$14 \cdot 22$	77-20

The physical constants of the following groups containing covalent double bonds have so far been determined : $\mathrm{C}=\mathrm{O}$ (Part XI, loc. cit.), $\mathrm{C}=\mathrm{S}$ and $\mathrm{N}=\mathrm{O}$; it is of interest to compare the constants for the three different types of double bond with those for the carbon to carbon double bond (Part XVI, this vol., p. 658). As a first approximation, the following values for the atomic constants have been used : C (in CH_{2}), O (in ethers), S (in sulphides), N (in tertiary aliphatic amines) (A) and N (in secondary aliphatic amines) (B). Another series of values for the
carbon-sulphur double bond may be computed from Timmermans and Martin's refractivity data (J. Chim. physique, $1928,25,413$) ($R_{\mathrm{C}} 21 \cdot 12, R_{\mathrm{D}} 21 \cdot 39, R_{\mathrm{F}} 22 \cdot 05, R_{\mathrm{G}}, 22 \cdot 64$, and $M n_{\mathrm{D}}^{20^{\circ}}$ 123.94) and Lek's parachor (Thesis, Brussels, 1930 ; Sidgwick, Sugden, and Adams, B.A. Report, 1932, p. 265) ($143 \cdot 6$) for carbon disulphide. By subtracting the author's constants for C (in CH_{2}) and S (in sulphides), the following constants are obtained for the carbon-sulphur double bond in carbon disulphide : $P 18 \cdot 9, R_{\mathrm{C}} 1 \cdot 43, R_{\mathrm{D}} 1 \cdot 48, R_{\mathrm{F}} 1 \cdot 65, R_{\mathrm{G}}, 1 \cdot 76, M n_{\mathrm{D}}^{20^{\circ}}-3 \cdot 75$; these, it will be noted, differ considerably from the figures deduced from alkyl xanthates. The main feature of Table XXI is the variation of the constants for the different double bonds; these results do not

Table XXI.
Preliminary constants for covalent double bonds.

	Nature of bond.	P.	$R_{\text {C }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20^{\circ}}$.
$\mathrm{C}=\mathrm{O}$		16.0	$0 \cdot 25$	$0 \cdot 25$	$0 \cdot 27$	$0 \cdot 24$	-6.04
$\mathrm{C}=\mathrm{S}$		$17 \cdot 0$	$2 \cdot 42$	$2 \cdot 56$	$2 \cdot 99$	$3 \cdot 33$	-1.37
$\mathrm{N}=\mathrm{O}(A)$		$26 \cdot 4$	$0 \cdot 68$	0.69	0.79	0.76	-3.97
$\mathrm{N}=\mathrm{O}(B)$		$20 \cdot 9$	$0 \cdot 83$	$0 \cdot 85$	0.99	1.08	$-5 \cdot 50$
$\mathrm{C}=\mathrm{C}$		$19 \cdot 9$	1.545	1.575	1.672	1.720	-6.07

support Sugden's assertion ($J ., 1925,127,1525$; $o p$. cit., p. 38) that the parachor value is independent of the elements connecting the double bond, although it must be admitted that the variation of the parachor is less than that for the refractivities.

The physical constants of the carbon-nitrogen triple bond may be evaluated by subtraction of C (in CH_{2}) and N (in tertiary aliphatic amines) from those for nitriles $-\mathrm{C} \equiv \mathrm{N}$ (Part XVII, loc. cit.) ; these are compared with those already found for the terminal carbon to carbon triple bond (Part XVII, loc. cit.) :

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20^{*}}$.
E(carbon-nitrogen)	$48 \cdot 8$	$0 \cdot 161$	$0 \cdot 124$	$0 \cdot 092$	-0.008	-13.62
F (carbon-carbon, terminal)	$40 \cdot 6$	1.959	1.977	2.061	$2 \cdot 084$	- 12.56

These results are not in agreement with Sugden's statement ($J ., 1924,125,1179$) that the same triple-bond constant [for the parachor] can be used for nitriles and acetylenes (compare Sugden, Reed, and Wilkins, loc. cit.).

The parachor and refractivity values for the various elements, structural constants, and groups so far determined are collected in Table XXII; these supersede those of Sugden and of Eisenlohr.

Discussion of the Structure of Esters of Oxy -acids and Related Compounds.-.The structures for the nitro-group, alkyl nitrates, thionyl chloride, sulphuryl chloride, dialkyl sulphites, dialkyl sulphates, phosphorus oxychloride, and trialkyl orthophosphates were given as (I)-(VIII) by Sugden, Reed, and Wilkins (loc. cit.) from determinations of the parachor and the application of the octet rule :

(I.)

(V.)

(II.)

(VI.)

(III.)

(VII.)

(IV.)

(VIII.)

The presence of co-ordinate or dative links in all these compounds, with the apparent exception of nitro-compounds and of esters of nitric acid, has been questioned on the basis of measurements of bond distances. Thus the S-O distance in the sulphate ion is 1.51 A ., which is considerably less than the sum of the single-bond covalent radii (1.70 A.) and approximates to the sum of the double-bond covalent radii (l-49 A.), and has led Pauling ("The Nature of the Chemical Bond ", Cornell, 1940, pp. 240-243) to propose the structure (IX) together with such resonating

(IX.)

(X.)

(XI.)
$\left[\begin{array}{c}\mathrm{O}^{--} \\ \mathrm{O}=\mathrm{S}^{++}=\mathrm{O} \\ \mathrm{O}^{--}\end{array}\right]^{--}$
(XII.)
structures as (X)-(XII) to account for the fact that the S-O distance is very close to that expected for pure double bonds. Wells (" Structural Inorganic Chemistry ", Oxford, 1945,

1842 Vogel: Physical Properties and Chemical Constitution.

Table XXII. Atomic, structural, and group parachors and vefractivities.

pp. 320, 321), in discussing Pauling's views on the structure of the sulphate ion, states: " It will probably be felt that this way of arriving at a picture of an ion apparently so simple as SO_{4}^{--} leaves much to be desired, but it seems the only method available at present. Similar difficulties are experienced with many molecular halides, oxy- and sulpho-halides and the more complex oxy-ions of $\mathrm{Si}, \mathrm{P}, \mathrm{S}$, and the halogens."

Phillips, Hunter, and Sutton (loc. cit.) from considerations of dipole moments, thermal data, and bond distances maintain that the co-ordinate links in the above formulæ (nitrates and nitro-compounds, although formulated, are not discussed in any detail) are double bonds and that such structures as (X)-(XII) are of minor importance. Their arguments are based upon numerous approximations (which are inevitable in the present state of our knowledge) and
include the use of Schomaker and Stevenson's empirical correction for the difference of the Pauling electronegativities between the bonded atoms (J. Amer. Chem. Soc., 1941, 63, 37) in order to establish their hypothesis that the co-ordinate link is nearly the same length as is to be expected for a normal single covalency between the same two atoms (compare, however, Wells, op. cit., p. 322). It may be noted that the Schomaker and Stevenson correction does not always give the desired result : thus Rogers and Spurr (J. Amer. Chem. Soc., 1947, 69, 2102) found the $\mathrm{Te}-\mathrm{Br}$ distance in tellurium dibromide by the electron-diffraction method to be 2.51 A .; the sum of the single bond radii is 2.51 A ., and the value obtained after the electronegativity correction has been applied is 2.45 A . A powerful argument employed by Phillips, Hunter, and Sutton is based upon the dipole moments of $\mathrm{Me}_{3} \mathrm{NO}, \mathrm{Ph}_{3} \mathrm{PO}, \mathrm{Ph}_{3} \mathrm{PS}, \mathrm{Me}_{3} \mathrm{~N}, \mathrm{BCl}_{3}, \mathrm{Me}_{3} \mathrm{~N}, \mathrm{BF}_{3}$, $\mathrm{Me}_{3} \mathrm{P}, \mathrm{BCl}_{3}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{BCl}_{3}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{BF}_{3}$, and $\mathrm{Et}_{2} \mathrm{~S}, \mathrm{BCl}_{3}$. It may be pointed out that many of these compounds are hygroscopic and sparingly soluble in benzene so that the difficulties of measurement are not inconsiderable; furthermore many assumptions are made in deducing the dipole moments of the various links. On the whole it would appear that, although a reasonable case has been made by Phillips, Hunter, and Sutton, the approximations so frequently introduced leave one with the impression that conclusions of such importance require further confirmation with other compounds and by other methods less open to criticism.

Pauling (" General Chemistry ", Freeman, 1947, pp. 161, 162) writes the structures of the oxy-acids (nitric, phosphoric, sulphuric, perchloric, sulphurous, and chlorous acids) on the basis of the octet rule, i.e., with co-ordinate or dative bonds.

The experimental results on parachors and molecular refractivities described in the present communication provide data for the attack of the problem from another viewpoint. It may be said at once that there is no evidence from these two sources that the compounds, previously assumed to contain co-ordinate links, contain double bonds as asserted by Phillips, Hunter, and Sutton. Broadly speaking, the parachor is far less sensitive to changes of structure than the molecular refractivity, so that special consideration will be given to the latter. The evidence may be summarised under the following headings :
(1) The differences $\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}-\mathrm{SOCl}_{2}\right)$ and $\left(\mathrm{POCl}_{3}-\mathrm{PCl}_{3}\right)$ give values for the parachor approximating to that for the oxygen atom alone (in agreement with Sugden), whilst the molecular refractivites are negative. Similar results are obtained for the series (alkyl sulphates - alkyl sulphites), i.e., $\quad\left(\mathrm{R}_{2} \mathrm{SO}_{4}-\mathrm{R}_{2} \mathrm{SO}_{3}\right)$ (Table IV). Data for trialkyl orthophosphites are scanty, but for the triethyl and tri- n-amyl esters the R_{D} differences for $\mathrm{R}_{3} \mathrm{PO}_{4}-\mathrm{R}_{3} \mathrm{PO}_{3}$ are negative ($-1 \cdot 28$).
(2) The constants for $>\mathrm{SO}_{2}$ (dialkyl sulphates) and $>\mathrm{SO}$ (dialkyl sulphites) have been evaluated (Tables V and VI, respectively). The differences in $R_{\mathrm{D}}{ }^{*}$ for $>\mathrm{SO}_{2}-\mathrm{S}$ (sulphides) and for $>\mathrm{SO}-\mathrm{S}$ (sulphides) are either negative ($P 36.8 ; R_{\mathrm{D}}-0.08$) or quite small ($P 18.5$; $R_{\mathrm{D}} 0 \cdot 13$).
(3) Similarly the differences in P and R_{D} for $\geqslant \mathrm{PO}$ (orthophosphates; Table VII) -P are $15 \cdot 3$ and $-3 \cdot 10$, respectively.
(4) The constants for the $-\mathrm{N}=\mathrm{O}$ grouping ($P 53 \cdot 4$; $R_{\mathrm{D}} 5 \cdot 20$; Table XI) may be easily computed from the experimental data on aliphatic nitrosoamines; here the presence of a covalent double bond is generally accepted. The differences in P and R_{D} for $-\mathrm{N}=\mathrm{O}-\mathrm{N}$ (tertiary aliphatic amines) are $46 \cdot 2$ (i.e., $\mathrm{O}+$ double bond) and 2.56 (a positive value considerably greater than for O alone) respectively.
(5) The constants for $\mathrm{S}=$, computed from $>\mathrm{C}=\mathrm{S}$ deduced from alkyl xanthates (Table XX), are $P 65.6$ and $R_{\mathrm{D}} 10.48 \dagger$ (i.e., $>\mathrm{C}=\mathrm{S}-\mathrm{C}$) ; the corresponding values deduced from carbon disulphide are 67.5 and 9.40 respectively. The constants for S (sulphides) are $P 48 \cdot 6$ and $R_{\mathrm{D}} 7.92$. It is generally agreed that both alkyl xanthates and carbon disulphide contain covalent double bonds. The corresponding values for ($\mathrm{S}+$ " bond attached to oxygen ") calculated from $>\mathrm{SO}$ (alkyl sulphites) - O (ethers) are $P 47 \cdot 3$ and $R_{\mathrm{D}} 4 \cdot 52$, whilst for $>\mathrm{SO}_{2}$ (alkyl sulphates) $-2 \times \mathrm{O}$ (ethers) the figures are $P 47.8$ and $R_{\mathrm{D}} 0.78$ respectively. The " bond attached to oxygen " in alkyl sulphites and sulphates would therefore not appear to be a double bond.

[^1](6) The constants for the nitro group $-\mathrm{N}_{\mathrm{O}}^{\mathrm{O}}$ are $P 73.8$ and $R_{\mathrm{D}} 6.71$ (Table XIII) and for the nitrite group $-\mathrm{O} \cdot \mathrm{N}=\mathrm{O}$ are $P \quad 75 \cdot 3$ and $R_{\mathrm{D}} 7 \cdot 24$ (Table XIV); the co-ordinate link in nitro-compounds has only a minor effect upon the parachor but produces an appreciable diminution of the molecular refractivity. The contribution of the additional oxygen atom in passing from alkyl nitrites to alkyl nitrates may be calculated from $-\mathrm{NO}_{3}--\mathrm{O} \cdot \mathrm{N}=\mathrm{O}$ and is $P 17 \cdot 6$ and $R_{\mathrm{D}} 1 \cdot 793$ [compare $>\mathrm{SO}-\mathrm{S}$ and $>\mathrm{SO}_{2}-\mathrm{S}$ and also $>\mathrm{PO}-\mathrm{P}$ in (2) and (3) above].

The following conclusions may be drawn :
(a) Parachor and particularly molecular refractivity determinations do not appear to provide any evidence for the presence of double covalent bonds in the compounds (I)-(VIII), which include the simple derivative of the oxy-acids of sulphur and phosphorus.
(b) The co-ordinate link in nitro-paraffins and in alkyl nitrates has little effect upon the parachor but there is a distinct decrease in the molecular refractivity.

Calculations are in progress of the bond refractivities and refractivities of electron groups utilising the experimental data described in this and the previous papers of this series; it is hoped that these will help to throw further light on inter alia the nature of oxy-bonds.

Structure of the Azide Group.-Sugden (op. cit., p. 123) claims to have shown that the cyclic structure for the azide group is supported by the parachors of a number of covalent azides (Lindemann and Thiele, Ber., 1928, 61, 1529) and gives a mean value for the azide group of $\mathbf{7 7 \cdot 2}$. In deducing the theoretical value for the cyclic structure he has assumed, without experimental evidence, that the parachor increments for the three-membered nitrogen ring and the nitrogen - nitrogen double bond are identical with those for the corresponding carbon structures; furthermore, the constant for the three-carbon ring is 12.3 (Part XVIII, this vol., p. 1804) and not 16.7 (the figure employed by Sugden). The theoretical parachors for the various alternative structures cannot at present be computed owing to the absence of suitable data for nitrogen compounds. An approximation may, however, be arrived at by comparing the isothiocyanate group $-\mathrm{N}=\mathrm{C}=\mathrm{S}$ (i) with the azide structure $-\mathrm{N} \Psi \mathrm{N}=\mathrm{N}$ (ii). By subtracting the values for C
 $\mathrm{NH}_{2}-2 \mathrm{H}$ and $\mathrm{NH}-\mathrm{H}$) in the constant for the isothiocyanate group (113.9), the figure of 73.6 is obtained for the structure (ii). This is sufficiently close to the observed value 77 to support the linear configuration. A similar calculation cannot be made for the molecular refractivity, which is far more sensitive to changes of structure than the parachor. The experimental molecular refractivity data for covalent azides provided by Philip ($J ., 1908,93$, 918 ; 1912, 101, 1866) cannot at present be employed to decide between the cyclic and the open-chain structures.

Comments on the Work of Strecker and Spitaler (Ber., 1926, 59, 1755).-This paper was overlooked when the author's experimental work was first planned during 1940 and the literature searched. It is essentially an attempt to deduce the structures of certain inorganic compounds, largely oxy-derivatives of sulphur, by spectrochemical methods; the compounds investigated included the dimethyl, diethyl, and di- n-propyl sulphides, sulphones, sulphoxides, symmetrical and unsymmetrical sulphites, and sulphates, and also triethyl phosphite, phosphate, and thiophosphate. Their general discussion is based upon formulæ for sulphoxides, sulphones, s-sulphites, as-sulphites, and sulphates incorporating covalent double bonds. The refractivity results are similar to those of the present author, and have been interpreted inter alia by assigning values for S according to the so-called valency, e.g., for $R_{\text {He }}$ they give $\mathrm{C}-\mathrm{S}^{\text {II }}-\mathrm{C} 7 \cdot 80$, $\mathrm{C}-\mathrm{S}^{\mathrm{IV}}-\mathrm{C} 6.98$, and $\mathrm{C}-\mathrm{S}^{\mathrm{VI}}-\mathrm{C} 5 \cdot 34$.

Their measurements may be employed to give preliminary values for certain constants by combining them with the experimental data given in this series.
(1) Subtraction of the constants for alkyl groups (Part XI, loc. cit.) from the refractivities found for sulphoxides gives $\mathrm{R}_{2} \mathrm{SO}-\mathrm{R}_{2}$, i.e., $\mathrm{c}-\mathrm{SO}-\mathrm{c}$.

	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}}$.
$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{Me}_{2}$	$8 \cdot 64$	8.72	$8 \cdot 86$	9.05
$\mathrm{Et}_{2} \mathrm{SO}-\mathrm{Et}_{2}$	$8 \cdot 53$	$8 \cdot 64$	$8 \cdot 79$	8.98
$\mathrm{Pr}^{n} \mathrm{SO}-\mathrm{Pr}^{n}$	$8 \cdot 52$	$8 \cdot 59$	$8 \cdot 76$	8.92

These constants differ from those found for dialkyl sulphite o-SO - o (Table VI).
(2) The contributions of the oxygen atom in sulphoxide can be deduced directly from $\mathrm{R}_{2} \mathrm{SO}-\mathrm{R}_{2} \mathrm{~S}$ (Part VII, loc. cit.) and are :

	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{G^{\prime}}$.
$\mathrm{Me}_{2} \mathrm{SO}-\mathrm{Me}_{2} \mathrm{~S}$	$0 \cdot 89$	0.90	$0 \cdot 89$	0.93
$\mathrm{Et}_{2} \mathrm{SO}-\mathrm{Et}_{2} \mathrm{~S}$.	$0 \cdot 70$	$0 \cdot 71$	$0 \cdot 67$	$0 \cdot 69$
$\mathrm{Pr}^{n}{ }_{2} \mathrm{~S}-\mathrm{Pr}^{n}{ }_{2} \mathrm{~S}$	$0 \cdot 72$	$0 \cdot 73$	$0 \cdot 73$	0.75

(3) The measurements on the solid dialkyl sulphones were carried out at temperatures of the order of 100° and these values have been employed in the evaluation of the constants for O_{2} in sulphones (they are clearly very approximate), i.e., $\mathrm{R}_{2} \mathrm{SO}_{2}-\mathrm{R}_{2} \mathrm{~S}$ (Part VII, loc. cit.) :

	$R_{\text {c }}$.	$R_{\text {D }}$.	R_{F}.	$R_{G^{\prime}}$.
$\mathrm{Me}_{2} \mathrm{SO}_{2}-\mathrm{Me}_{2} \mathrm{~S}$	$8 \cdot 62$	$8 \cdot 66$	$8 \cdot 73$	$8 \cdot 85$
$\mathrm{Et}_{2} \mathrm{SO}_{2}-\mathrm{Et}_{2} \mathrm{~S}$	8.58	$8 \cdot 67$	8.74	$8 \cdot 86$
$\mathrm{Pr}^{n} \mathrm{SO}_{2}-\mathrm{Pr}^{n_{2}} \mathrm{~S}$	$8 \cdot 66$	$8 \cdot 68$	$8 \cdot 77$	$8 \cdot 89$

(4) The differences (as-dialkyl sulphites - s-dialkyl sulphites) are negative. In the results given below the data for dialkyl sulphites are those from Part VII (loc. cit.) ; as.-diethyl sulphite has already been investigated in Part VII and the figures are given in the line Et (V).

	$a s$-Sulphite $-s$-sulphite : $\mathrm{R}=$	$R_{\text {C }}$.	R_{D}.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.
Me.		-1.25	-1.27	-1.33	$-1 \cdot 34$
Et		-1.42	-1.45	-1.49	-1.49
Et (V)		-1.61	-1.70	-1.70	-1.77
Pr^{n}		-1.47	-1.50	-1.55	-1.53

Further comments on the above are deferred pending the completion of the calculations of bond refractivities and refractivities of electron groups.

Experimental.

Dichloroacetic Acid.-This acid was prepared from pure chloral hydrate (Org. Synth., 1939, 19, 38) and had b. p. $105-106^{\circ} / 26-27 \mathrm{~mm}$.

Silver salt. 160 G . of the pure acid were treated with 386 ml . of $3 \cdot 22 \mathrm{~N}$-ammonia solution in a $2-1$. beaker, and then a solution of 232 g . of silver nitrate in 500 ml . of water was added with mechanical stirring during 30 minutes. After standing overnight in the dark, the crystalline solid was collected (the filtrate was kept), washed, and dried first between filter paper and finally in a vacuum desiccator over silica gel and anhydrous calcium chloride in the dark to constant weight: the yield of silver dichloroacetate was 148 g . (theory : about 290 g .). The filtrate from the silver salt was treated with excess of dilute hydrochloric acid, filtered, the filtrate extracted three times with ether, dried, and distilled : about 75 g . of dichloroacetic acid were recovered.

Methyl dichloroacetate. 39 G . of silver dichloroacetate were suspended in 75 ml . of sodium-dried A.R. benzene in a flask fitted with a reflux condenser, and 26 g . of pure methyl iodide were added dropwise. The mixture was warmed gently until reaction commenced: when the violent reaction was over, the mixture was refluxed for 2 hours, filtered at the pump, and the solid washed with benzene. The combined filtrate and extracts were washed twice with saturated sodium hydrogen carbonate solution and water, dried $\left(\mathrm{CaSO}_{4}\right)$, and distilled. The yield of ester, b. p. $143^{\circ} / 763 \mathrm{~mm}$., was 9 g .

Ethyl dichloroacetate. This was prepared from 39 g . of dry silver dichloroacetate, 75 ml . of dry benzene, and 29 g . of pure ethyl iodide. The mixture was refluxed for 5 hours and yielded, as detailed for the methyl ester, 10 g . of ethyl dichloroacetate, b. p. $155 \cdot 5^{\circ} / 764 \mathrm{~mm}$.
$\mathrm{n}-P r o p y l$ dichloroacetate. A mixture of 31 g . of silver dichloroacetate, 75 ml . of dry benzene, and 25 g . of n-propyl iodide was refluxed for 1.5 hours, and afforded 11.5 g . of ester, b. p. $174 \cdot 5-175^{\circ} / 769 \mathrm{~mm}$.
n -Butyl dichloroacetate. A mixture of 39 g . of silver dichloroacetate, 75 ml . of dry benzene, and 32 g . of n-butyl iodide yielded, as for the methyl ester, after refluxing for 4 hours, 12 g . of ester, b. p. $192^{\circ} / 749 \mathrm{~mm}$. (Found : $\mathrm{Cl}, 38 \cdot 5 . \quad \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{Cl}, 38 \cdot 3 \%$).

Methyl Trichloroacetate.-A mixture of 32 g . of B.D.H. A.R. trichloroacetic acid, 64 g . of Burrough's synthetic absolute methyl alcohol, and 3.2 g . of concentrated sulphuric acid was refluxed for 20 hours, about half of the excess of alcohol was distilled off on a water-bath, the residue poured into excess of water, and the lower layer of ester (24 g .) separated. This was washed with saturated sodium hydrogen carbonate solution and water, dried, and distilled; the ester boiled constantly at $152^{\circ} / 758 \mathrm{~mm}$.

Ethyl Trichloroacetate.-A mixture of 32 g . of the A.R. acid, 92 g . of absolute ethyl alcohol, and 4.6 g . of concentrated sulphuric acid was refluxed for 60 hours and yielded, as for the methyl ester with the modification that the ester was isolated by ether extraction, 20 g . of pure ethyl trichloroacetate, b. p. $166^{\circ} / 755 \mathrm{~mm}$.
n -Propyl Trichloroacetate.-A mixture of 32 g . of the A.R. acid, 24 g . of pure n-propyl alcohol, 50 ml . of sodium-dried A.R. benzene, and 10 g . of concentrated sulphuric acid was refluxed for 40 hours, poured into excess of water, and ether added to assist the separation of the benzene layer. The ether-benzene extract of the ester was washed with saturated sodium hydrogen carbonate solution and water, dried, and distilled. The yield of ester, b. p. $68^{\circ} / 8.5 \mathrm{~mm}$., was 30 g .
n -Butyl Trichloroacetate.-A mixture of 32 g . of the A.R. acid, 30 g . of pure n-butyl alcohol, 50 ml . of dry benzene, and 10 g . of concentrated sulphuric acid was refluxed for 60 hours and yielded, as for the n-propyl ester, 40 g . of n -butyl trichloroacetate, b. p. $204^{\circ} / 762 \mathrm{~mm}$., $81 \cdot 5^{\circ} / 7 \cdot 5 \mathrm{~mm}$. (Found : $\mathrm{Cl}, 48 \cdot 3$. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}_{3}$ requires $\mathrm{Cl}, 48 \cdot 5 \%$).

Methylene Chloride.-The commercial product was fractionated and the fraction of b. p. 40-41 ${ }^{\circ}$ was collected. This was washed with 5% sodium carbonate solution and water, dried, and distilled through a Widmer column; b. p. $40^{\circ} / 763 \mathrm{~mm}$.

Methylene Bromide.-This was prepared from commercial 96% bromoform by treatment with alkaline sodium arsenite solution, prepared from A.R. arsenious oxide (Org. Synth., 1929, 9, 56), and boiled constantly at $97^{\circ} / 760 \mathrm{~mm}$.

Methylene Iodide.-This was prepared by reduction of pure iodoform with alkaline sodium arsenite solution (from A.R. arsenious oxide) (Org. Synth., 1921, 1, 57). After two distillations, the methylene iodide had b. p. $80^{\circ} / 25 \mathrm{~mm}$. and was straw-coloured. Shaking with a little pure silver powder before distillation reduced the intensity of the colour of the crude product.

Ethylidene Chloride.-A 100 -g. sample (Eastman Kodak) was washed with saturated sodium hydrogen carbonate solution until effervescence ceased, then with water, dried, and fractionated; b. p. $57 \cdot 5^{\circ} / 761 \mathrm{~mm}$.
s-Tetrachloroethane.-135 Ml. of the technical product were stirred mechanically for 10 minutes with 17 ml . of concentrated sulphuric acid at $80-90^{\circ}$; the brownish-yellow acid layer was removed, replaced by a further 17 ml . of concentrated sulphuric acid, and the process repeated twice, whereupon the acid appeared unaffected. The acid was separated, and the tetrachloroethane well washed with water and distilled in steam. The organic layer was washed with water, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and distilled in an all-glass apparatus through a Widmer column; b. p. $147^{\circ} / 770 \mathrm{~mm}$.

Chloroform.-About 100 ml . of A.R. chloroform were shaken with 5 ml . of concentrated sulphuric acid, washed with water until the washings were neutral to litmus, dried (CaSO_{4}), and distilled in an all-glass apparatus through a Widmer column; b. p. $61 \cdot 5^{\circ} / 765 \mathrm{~mm}$.

Methylchloroform.-The Eastman Kodak product was dried (CaSO_{4}) and distilled in an all-glass apparatus through a Widmer column. All boiled constantly at $73 \cdot 5^{\circ} / 758 \mathrm{~mm}$.

Carbon Tetrachloride.-The A.R. product was dried $\left(\mathrm{CaCl}_{2}\right)$ and distilled through a Widmer column; b. p. $76 \cdot 5^{\circ} / 766 \mathrm{~mm}$.

Ethylidene Bromide.-An Eastman Kodak preparation was washed with sodium hydrogen carbonate solution until effervescence ceased, then with water, dried $\left(\mathrm{CaCl}_{2}\right)$, and distilled from a Claisen flask with fractionating side arm; b. p. $108^{\circ} / 771 \mathrm{~mm}$. The purified product was colourless, but upon keeping for a few days acquired a pale yellow colour and traces of hydrogen bromide were evolved.
s-Tetrabromoethane.-The yellow commercial product (B.D.H.) was shaken three times with 12% of its volume of concentrated sulphuric acid, then washed thrice with water, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$, followed by CaSO_{4}), and distilled; b. p. $124^{\circ} / 19 \mathrm{~mm}$., a colourless liquid.

Bromoform.-The B.D.H. product, containing 4% of alcohol, was washed with a saturated solution of calcium chloride to remove the alcohol, dried $\left(\mathrm{CaCl}_{2}\right)$, and fractionated. Pure bromoform was collected at $148.5^{\circ} / 761 \mathrm{~mm}$. as an almost colourless liquid; this is comparatively unstable and after a day or two a yellow cloudiness is present at the surface.

1:2:3-Tribromopropane.-A large sample, prepared by the interaction of allyl bromide and bromine (Org. Synth., 1925, 5, 99), was carefully fractionated ; b. p. $100^{\circ} / 16 \mathrm{~mm}$.

Triethyl Orthoformate.-A B.D.H. sample was dried $\left(\mathrm{CaCl}_{2}\right)$ and fractionated through a Widmer column; b. p. $143^{\circ} / 765 \mathrm{~mm}$.

Tri-n-propyl Orthoformate.-The Eastman Kodak product was dried and fractionated; b. p. $91^{\circ} / 17 \mathrm{~mm}$.

Tri-n-butyl Orthoformate.-The Eastman Kodak product was dried and fractionated; b. p. $127^{\circ} / 16 \mathrm{~mm}$.

Thionyl Chloride.-B.D.H. " redistilled " thionyl chloride was mixed with 10% of its weight of pure quinoline and distilled in an all-glass apparatus through a Widmer column, moisture being carefully excluded; b. p. $76 \cdot 5^{\circ} / 768 \mathrm{~mm}$.

Sulphuryl Chloride.-B.D.H. " redistilled " sulphuryl chloride was distilled in an all-glass apparatus through a Widmer column, entrance of moisture being prevented; b. p. $69 \cdot 5^{\circ} / 775 \mathrm{~mm}$.

Phosphorus Trichloride.-A pure commercial product was fractionally distilled as for sulphuryl chloride; b. p. $75^{\circ} / 772 \mathrm{~mm}$.

Phosphorus Oxychloride.-The B.D.H. pure product was fractionally distilled as for sulphuryl chloride ; b. p. $106 \cdot 5^{\circ} / 775 \mathrm{~mm}$.

Phosphorus Tribromide.-In a $500-\mathrm{ml}$. three-necked flask, equipped with a dropping funnel, reflux condenser, and carbon tetrachloride-sealed mechanical stirrer, were placed 28 g . of dry purified red phosphorus and 200 ml . of dry A.R. carbon tetrachloride: ground glass joints are to be preferred, but " neoprene" or used rubber stoppers may also be used. The mixture was vigorously stirred and 198 g . of A.R. bromine were added during $1 \cdot 5-2$ hours. The reaction mixture was gently refluxed on a waterbath for 15 minutes, allowed to settle, and the clear solution filtered through a fluted filter paper into the $500-\mathrm{ml}$. flask of an all-glass distillation apparatus, which included a well-lagged, all-glass 15 cm . Dufton column. The solvent was distilled off on a water-bath; upon rise of the temperature, the phosphorus tribromide (190 g .) passed over at $168-169^{\circ} / 765 \mathrm{~mm}$. Upon redistillation from an all-glass apparatus, without a column, the product boiled constantly at $171 \cdot 5^{\circ} / 763 \mathrm{~mm}$.

Dimethylnitrosoamine.-This was prepared from pure dimethylamine hydrochloride and nitrous acid (compare Cohen, "Practical Organic Chemistry", 1924, p. 96) and boiled constantly at $151^{\circ} / 767 \mathrm{~mm}$.

Diethylnitrosoamine.- 36.5 G . of pure diethylamine were added slowly to the calculated quantity of 5 N -hydrochloric acid contained in a $250-\mathrm{ml}$. distilling flask, followed by 39 g . of sodium nitrite (assumed of 90% purity). The contents of the flask were rapidly distilled to dryness. The upper yellow layer of the distillate was removed, and the lower layer was saturated with A.R. potassium carbonate whereupon more of the nitrosoamine separated and was added to the upper layer. The crude nitrosoamine was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ during 24 hours and distilled. The yield of diethylnitrosoamine, b. p. $174 \cdot 5^{\circ} / 777 \mathrm{~mm}$., was 44 g .

Di-n-propylnitrosoamine.-This was prepared from 29 g . of di- n-propylamine (Eastman Kodak), 58 ml . of 5 N -hydrochloric acid, and 22 g . of sodium nitrite, as for the diethyl compound. The yield of product, b. p. $89^{\circ} / 13 \mathrm{~mm}$., was 31 g . (compare Schmidt, Z. physikal. Chem., 1907, 58, 513).

Di-n-butylnitrosoamine.- 26 G . of Sharples's di- n-butylamine were added to 41 ml . of 5 N -hydrochloric acid; some hydrochloride separated out and the mixture was transferred with the aid of 20 ml . of water
to a $200-\mathrm{ml}$. distilling flask containing 15.5 g . of sodium nitrite (assumed of 90% purity). Upon warming, an upper layer appeared; the mixture was rapidly distilled to dryness, and the nitrosoamine isolated as for the diethyl analogue. The yield was $26 \mathrm{~g} . ; \mathrm{b} . \mathrm{p} .125-125.5^{\circ} / 21 \mathrm{~mm}$.

Nitromethane.-About 150 g . of highly purified nitromethane, kindly supplied by Imperial Chemical Industries Ltd., were dried $\left(\mathrm{CaSO}_{4}\right)$ and distilled through a three-section Pyrex Young and Thomas column. Most of it passed over at $101^{\circ} / 762 \mathrm{~mm}$.

Nitroethane.-A highly purified sample, presented by Imperial Chemical Industries Ltd., was dried and distilled as for nitromethane; b. p. $130 \cdot 5^{\circ} / 761 \mathrm{~mm}$.

2-Nitro-n-propane.-The I.C.I. product was purified as for nitromethane; b. p. $119.5^{\circ} / 752 \mathrm{~mm}$.
I-Nitro-n-butane.-Commercially pure silver nitrite (Johnson and Matthey) was washed with absolute alcohol and then with sodium-dried ether, and dried by heating at 100° for 20 minutes, followed by keeping in a vacuum desiccator for 24 hours. In a $200-\mathrm{ml}$. distilling flask, fitted with a reflux condenser and with the side arm closed by a cork, were placed 64 g . of dry n-butyl bromide and 80 g . of the purified silver nitrite. No reaction occurred in the cold. After standing for 2 hours, the mixture was heated successively on a steam-bath for 4 hours (some brown fumes were evolved) and in an oil-bath at 110° for 8 hours. The mixture was distilled and the fraction, b. p. $150-151.5^{\circ} / 780 \mathrm{~mm}$. (18 g .), was collected separately. This was dried $\left(\mathrm{CaSO}_{4}\right)$ and distilled : pure l-nitro-n-butane was collected at $151.5-152.5^{\circ} / 780 \mathrm{~mm}$., as a colourless liquid.

1-Nitro-n-pentane.-A mixture of 56 g . of dry silver nitrite and 50 g . of n-amyl bromide was heated, as for 1 -nitro- n-butane, in a bath at 110° for 2 hours, at $115-125^{\circ}$ for 2.5 hours, kept at room temperature for 12 hours, and then at $120-130^{\circ}$ for 2.5 hours. Distillation yielded 15 g . of a fraction, b. p. $170-173^{\circ} / 775 \mathrm{~mm}$., which was yellow. Redistillation gave pure l-nitro-n-pentane, b. p. $66^{\circ} / 16 \mathrm{~mm} .$, as a colourless liquid. Distillation at atmospheric pressure yields a yellow product, evidently due to slight decomposition.

I-Nitro-n-hexane.-A mixture of 41 g . of dry silver nitrite, 51 g . of n-hexyl iodide, and 100 ml . of sodium-dried ether was refluxed for 8 hours, the ethereal solution was decanted, and the solid thoroughly washed with dry ether. After removal of the ether, the residue was distilled and the following fractions were collected, all of which were colourless : $100-160^{\circ}, 9 \mathrm{~g} . ; 160-189^{\circ}, 4.5 \mathrm{~g} . ; 190-193^{\circ}, 13 \mathrm{~g}$. The last fraction was dried (CaSO_{4}) and distilled; b. p. $81.5^{\circ} / 15 \mathrm{~mm}$. The silver nitrite-n-hexyl bromide procedure was less satisfactory.
n -Butyl Nitrite. -This was prepared from n-butyl alcohol and nitrous acid (Org. Synth., 1936, 16, 7) and was collected as a pale yellow liquid, b. p. $27^{\circ} / 88 \mathrm{~mm}$. The physical measurements for all alkyl nitrites were carried out immediately after distillation because of their comparative instability.
$\mathrm{n}-A m y l$ Nitrite.-A solution of 95 g . of sodium nitrite in 375 ml . of water was placed in a 1-1. threenecked flask, equipped with a mechanical stirrer, a thermometer, and a dropping funnel with stem extending to the bottom of the flask, and cooled to 0°. A mixture of 25 ml . of water, 62.5 g . of concentrated sulphuric acid, and 110 g . of redistilled n-amyl alcohol (Sharples, b. p. $137^{\circ} / 766 \mathrm{~mm}$.), cooled to 0°, was added with stirring during 1 hour; the temperature was maintained at $\pm 1^{\circ}$ throughout. After standing at 0° for 1.5 hours, the mixture was filtered, the yellow amyl nitrite layer was separated and washed twice with 25 ml . portions of a solution containing 1 g . of sodium hydrogen carbonate and 12.5 g . of sodium chloride in 50 ml . of water, and then dried (CaSO_{4}). The crude nitrite (107 g .) upon distillation passed over largely at $104-105^{\circ} / 763 \mathrm{~mm}$.; a middle fraction, b. p. $104 \cdot 5^{\circ} / 763 \mathrm{~mm}$., had $d_{4^{\circ}}^{20^{\circ}} 0.8816, n_{\mathbf{D}}^{20^{\circ}} 1.3892$. The compound was distilled under reduced pressure for the physical measurements; b. p. $29^{\circ} / 40 \mathrm{~mm}$.
n-Hexyl Nitrite.-This was prepared similarly to n-amyl nitrite with the substitution of 127.5 g . of n-hexyl alcohol (Carbon and Carbide Corporation, b. p. $156-157^{\circ} / 752 \mathrm{~mm}$.) for the n-amyl alcohol. The yield of crude nitrite was 125 g .; this boiled at $129-130^{\circ} / 761 \mathrm{~mm}$. and a middle fraction, immediately after distillation, had $d_{4^{\circ}}^{20^{\circ}} 0.8810, n_{D^{30}}^{30^{\circ}} 1 \cdot 3986$, and after 24 hours $d_{4^{2}}^{20} 0 \cdot 8810, n_{\mathrm{D}}^{30^{\circ}} 1 \cdot 3992$. The systematic physical measurements were carried out with a sample which was distilled under reduced pressure; b. p. $52^{\circ} / 44 \mathrm{~mm}$.

Nitrobenzene.-The A.R. product (B.D.H.) was distilled from an all-glass apparatus and a middle fraction was collected; b. p. $207 \cdot 5^{\circ} / 760 \mathrm{~mm}$.

Ethyl Nitrate.-An Eastman Kodak preparation was washed twice with water, dried (MgSO_{4}) and distilled through a fractionating column in an all-glass apparatus; b. p. $88^{\circ} / 757 \mathrm{~mm}$.
n-Propyl Nitrate. 100 G. of pure concentrated nitric acid were boiled with 2 g . of urea until effervescence ceased (20 minutes) and then cooled to 0°. A solution of 12.5 g . of urea in 60 g . of pure n-propyl alcohol, cooled to 0°, was introduced during 15 minutes, allowed to stand for 15 minutes, and then distilled in an all-glass apparatus from a bath at $110-115^{\circ}$. The distillate (100 ml .) was well washed with brine (a few drops of sodium hydroxide solution were added to the final wash solution to remove the last traces of acid), then washed with water and dried (MgSO_{4}). Fractional distillation through an all-glass apparatus from an oil-bath yielded 30 ml . of n-propyl alcohol (b. p. $95-105^{\circ}$, mainly $95-97^{\circ}$), followed by 25 g . of n-propyl nitrate at $109-110^{\circ}$. Refractionation of the n-propyl nitrate gave the pure compound, b. p. $110^{\circ} / 762 \mathrm{~mm}$.
n -Butyl Nitrate.-This was prepared from 100 g . of nitrous acid-free nitric acid and 74 g . of pure n-butyl alcohol as described for n-propyl nitrate. The yield of n-butyl nitrate, b. p. $135-135 \cdot 5^{\circ} / 762 \mathrm{~mm}$., was 24 g .

Dimethyl Carbonate.-100 G. of the commercial product (B.D.H.) were washed successively with 10% sodium carbonate solution, saturated calcium chloride solution, and water, dried by shaking mechanically for 1 hour with anhydrous calcium chloride (compare Org. Synth., 1931, 11, 99, Note 3), and fractionated; b. p. $89 \cdot 5^{\circ} / 755 \mathrm{~mm}$.

Diethyl carbonate (Hopkin and Williams), di-n-propyl carbonate (Eastman Kodak), di-n-butyl carbonate (Eastman Kodak) and diisobutyl carbonate (Eastman Kodak) were similarly purified and had b. p. $125.5^{\circ} / 758 \mathrm{~mm} ., 165^{\circ} / 752 \mathrm{~mm} ., 204 \cdot 5^{\circ} / 758 \mathrm{~mm}$., and $187.5^{\circ} / 763 \mathrm{~mm}$., respectively.

Methyl Thiocyanate.-The Eastman Kodak product was dried (CaSO_{4}) and fractionated; b. p. $130 \cdot 5^{\circ} / 765 \mathrm{~mm}$.

1848 Vogel: Physical Properties and Chemical Constitution.

Ethyl Thiocyanate.-The Eastman Kodak product was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and fractionated; b. p. $145 \cdot 5^{\circ} / 765 \mathrm{~mm}$.
n-Propyl Thiocyanate. -In a 1-1. three-necked flask, fitted with a dropping funnel, a mercury-sealed mechanical stirrer, and a reflux condenser, was placed a mixture of 133 g . of A.R. potassium thiocyanate and 312 g . of rectified spirit. The stirrer was set in motion, the mixture heated on a ring burner, and 154 g . of n-propyl bromide added during 20 minutes; potassium bromide separated and the mixture was refluxed for 5 hours with vigorous stirring in order to avoid bumping. After the mixture had been kept overnight, the potassium bromide were filtered off and washed with 75 ml . of rectified spirit. The combined filtrate and washings were distilled on a water-bath through a four-section Pyrex Young and Thomas column to separate most of the alcohol. The residue was treated with 125 ml . of water, the upper layer separated, and the aqueous phase extracted with two $50-\mathrm{ml}$. portions of ether. The combined upper layer and ether extracts were dried and distilled from a $250-\mathrm{ml}$. flask through a well-lagged three-section Pyrex Young and Thomas column. After the ether and a little alcohol had passed over at 78°, the temperature rose sharply to $164 \cdot 5-165^{\circ} / 762 \mathrm{~mm}$. and 93 g . passed over at this temperature. Upon redistillation, the n-propyl thiocyanate boiled constantly at $164 \cdot 5^{\circ} / 760 \mathrm{~mm}$. The above procedure is superior to that described in Org. Synth., 1931, 11, 92, for i sopropyl thiocyanate since it gives a pure product (b. p. range $<1^{\circ}$) in one operation.
n -Butyl Thiocyanate.-This was prepared, as for the n-propyl compound, from 133 g . of A.R. potassium thocyanate, 312 g . of rectified spirit, and 172 g . of n-butyl bromide. The yield of crude ester, b. p. 183°, was 126 g . This was further dried $\left(\mathrm{CaSO}_{4}\right)$ and redistilled; b. p. $184^{\circ} / 770 \mathrm{~mm}$.

Ethyl isoThiocyanate.-The Eastman Kodak product was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and distilled from a Claisen flask with fractionating side arm; b. p. $132-132 \cdot 5^{\circ} / 762 \mathrm{~mm}$.

Allyl isoThiocyanate.-The B.D.H. pure product was fractionated as for the ethyl compound; b. p. $151-151 \cdot 5^{\circ} / 768 \mathrm{~mm}$.

Potassium Ethyl Xanthate.-42 G. of potassium hydroxide pellets were dissolved in 120 g . of absolute ethyl alcohol (refluxing was necessary) and the cold solution decanted from the undissolved impurities. 57 G . of A.R. carbon disulphide were added slowly and with constant shaking; the mixture set almost solid. The solid was filtered off and washed twice with ether ($d 0.720$) and once with anhydrous ether; the yield was 110 g . The ester was dried by leaving it for 3 days in a vacuum desiccator over silica gel; the yield of the dry compound was 74 g .

Diethyl Xanthate.-A mixture of 32 g . of potassium ethyl xanthate, 50 ml . of absolute ethyl alcohol, and 32 g . of ethyl iodide was refluxed for 3 hours: no reaction occurred in the cold but within 15 minutes of heating the yellow mixture became white owing to separation of potassium iodide. Excess of water was added, and the lower layer separated, washed with water and dried (CaSO_{4}). The crude dry compound (29.5 g .) had b. p. $196-198^{\circ} / 761 \mathrm{~mm}$. This was redistilled for the physical measurements; b. p. $70 \cdot 2^{\circ} / 4 \cdot 9 \mathrm{~mm}$.

Di-n-propyl Xanthate.-A mixture of 42 g . of potassium n-propyl xanthate, 50 ml . of absolute alcohol, and 4 I .5 g . of n-propyl iodide was warmed gently on a water-bath until reaction commenced; after I hour the vigorous reaction subsided and the mixture was refluxed for 3 hours. The crude ester (36 g .) was isolated as for the ethyl compound and had b. p. $91 \cdot 1^{\circ} / 4 \cdot 5 \mathrm{~mm}$. (Found: $\mathrm{S}, 35 \cdot 9 . \quad \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OS}_{2}$ requires $\mathrm{S}, \mathbf{3 6} \cdot \mathbf{0} \%$).

Potassium n-Propyl Xanthate.- 28 G . of potassium hydroxide pellets were refluxed with 100 g . of n-propyl alcohol for 2 hours, and then cooled to room temperature. The solution was decanted from the little solid which had separated, and 38 g . of A.R. carbon disulphide were added slowly. After cooling in ice, the solid was filtered off, washed twice with ether ($d 0.720$) and once with anhydrous ether, and dried over silica gel in a vacuum desiccator to constant weight. The yield of dry xanthate was 42 g .

Ethyl S-n-Butylxanthate.-This was prepared from 32 g . of potassium ethyl xanthate, 50 ml . of absolute alcohol, and 37 g . of n-butyl iodide as detailed for diethyl xanthate and the product was isolated directly after saturation of the diluted reaction mixture with salt. The crude dry xanthate weighed 35 g. , and on distillation boiled constantly at $90 \cdot 3^{\circ} / 4 \cdot 0 \mathrm{~mm}$. (Found: $\mathrm{S}, 35 \cdot 8$. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OS}_{2}$ requires S, 36.0%).

Potassium n-Butyl Xanthate.- 20 G. of potassium hydroxide pellets were refluxed with 100 g . of n-butyl alcohol until dissolved and then allowed to cool to room temperature. The solution was decanted from the impurities and the little solid potassium hydroxide which had separated, and then 36 g . of A.R. carbon disulphide were slowly added. After cooling in ice, the potassium derivative was filtered off, washed successively with ether ($d 0 \cdot 720$) and sodium-dried ether, and dried in a vacuum desiccator over silica gel and anhydrous calcium chloride for 3 days. The yield of dry potassium n-butyl xanthate was 42 g . It crystallises well from absolute ethyl alcohol.
n-Butyl S-Ethylxanthate.-The crude product, prepared from 47 g . of potassium n-butyl xanthate, 50 ml . of absolute ethyl alcohol, and 39 g . of ethyl iodide as detailed for ethyl $S-n$-butylxanthate, weighed 42 g . The pure ester boiled at $91 \cdot 0^{\circ} / 4 \cdot 3 \mathrm{~mm}$. (Found : S, $35 \cdot 0 . \quad \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OS}_{2}$ requires $\mathrm{S}, 36 \cdot 0 \%$).

Di-n-butyl Xanthate.-This was prepared in the usual manner from 31.5 g . of potassium n-butyl xanthate, 50 ml . of absolute ethyl alcohol, and 30 g . of n-butyl iodide. The yield of xanthate, b. p. $117 \cdot 0^{\circ} / 4 \cdot 0 \mathrm{~mm}$., was 29 g . (Found : S, $31 \cdot 3 . \quad \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OS}_{2}$ requires $\mathrm{S}, 3 \mathrm{I} \cdot 1 \%$).
545. Methyl dichloroacetate. B. p. $143^{\circ} / 763 \mathrm{~mm} . ; M 142 \cdot 95 ; n_{\mathrm{O}} \mathrm{l} \cdot 44034, n_{\mathrm{D}} \mathrm{l} \cdot 44275, n_{\mathrm{F}} \mathrm{I} \cdot 44864$, , $n_{G^{\prime}} 1.45302 ; R_{\mathrm{G}} 27.38, R_{\mathrm{D}} 27.52, R_{\mathrm{F}} 27.83, R_{G^{\prime}} 28 \cdot 07 ; M n_{\mathrm{D}}^{20^{\prime}} 206 \cdot 25$. Densities determined: $d_{4^{20}}{ }^{\circ}$

(These headings apply to all the succeeding tables in this paper).

t.	H.	$d_{4}^{\text {c }}$.	γ.	P.	t.	H.	$d_{4}^{\text {to }}$.	γ.	P.
18:0 0°	$10 \cdot 24$	1-3784	$34 \cdot 86$	$252 \cdot 0$	$60 \cdot 8^{\circ}$	$9 \cdot 06$	1.3216	29.57	$252 \cdot 2$
$21 \cdot 0$	$10 \cdot 13$	$1 \cdot 3753$	34.41	$251 \cdot 7$	$86 \cdot 3$	$8 \cdot 35$	$1 \cdot 2840$	26.48	$252 \cdot 6$
$41 \cdot 4$	$9 \cdot 60$	$1 \cdot 3478$	31.95	$252 \cdot 2$					$252 \cdot \mathrm{I}$

546. Ethyl dichloroacetate. B. p. $155.5^{\circ} / 764 \mathrm{~mm} . ; M 157.00$; $n_{\mathrm{C}} 1.43608, n_{\mathrm{D}} \mathrm{l} \cdot 4384 \mathrm{l}, n_{\mathrm{F}} 1 \cdot 44420$, $n_{G^{\prime}} \mathrm{I} \cdot 44853 ; R_{\mathrm{G}} 32 \cdot 0 \mathrm{I}, R_{\mathrm{D}} 32 \cdot 16, R_{\mathrm{F}} 32.53, R_{\mathrm{G}^{\prime}} 32 \cdot 80 ; M n_{\mathrm{D}}^{20^{\circ}} 225 \cdot 83$. Densities determined : $d_{4^{20}}{ }^{\circ}$ $1 \cdot 2826, d_{4^{\circ}}^{41 \cdot 3} 1-2553, d_{4^{61}}{ }^{1 \cdot 4^{\circ}} 1-2298, d_{4^{86}}^{86} 6^{\circ} 1 \cdot 1959$. Apparatus D.

t.	H.	$d_{4}^{\text {d }}$.	γ.	P.	t.	H.	$d_{4}^{\text {l }}$.	γ.	P.
$19.9{ }^{\circ}$	$10 \cdot 36$	1.2827	32.74	292.9	$61.4{ }^{\circ}$	$9 \cdot 09$	1-2298	27.61	$292 \cdot 6$
$27 \cdot 2$	10.07	$1 \cdot 2733$	31.67	292.5	$87 \cdot 4$	8.43	1-1949	24.88	293.4
41-6	$9 \cdot 70$	$1 \cdot 2549$	$30 \cdot 06$	293.0					$292 \cdot 9$

54\%. n-Propyl dichloroacetate. B. p. $174 \cdot 5-175^{\circ} / 769 \mathrm{~mm}$; $M 171 \cdot 02$; $n_{\mathrm{O}} \mathrm{I} \cdot 43759, n_{\mathrm{D}} \mathrm{I} \cdot 43993$, $n_{\mathrm{F}} 1 \cdot 44572, n_{\mathrm{G}} 1 \cdot 45000 ; R_{\mathrm{C}} 36 \cdot 68, R_{\mathrm{F}} 36 \cdot 85, R_{\mathrm{F}} 37 \cdot 27, \mathrm{R}_{\mathrm{G}} 37 \cdot 58 ; M n_{\mathrm{D}}^{20^{\circ}} 246 \cdot 25$. Densities determined :

$16 \cdot 5^{\circ}$	$13 \cdot 52$	1.2272	$31 \cdot 07$	329.0	$41 \cdot 2^{\circ}$	$12 \cdot 64$	$1 \cdot 1979$	$28 \cdot 35$	$329 \cdot 4$
$21 \cdot 4$	$13 \cdot 41$	1.2213	30.67	329.5	$61 \cdot 9$	$11 \cdot 95$	$1 \cdot 1728$	$26 \cdot 24$	$330 \cdot 0$
29.9	13.12	$1 \cdot 2111$	29.75	329.8	$86 \cdot 3$	11.06	$1 \cdot 1429$	23.67	$330 \cdot 7$
								Mean $329 \cdot 6$	

548. n -Butyl dichloroacetate. B. p. $192^{\circ} / 749 \mathrm{~mm}$; $M 185 \cdot 05 ; n_{\mathrm{C}} \mathrm{I} \cdot 44009, n_{\mathrm{D}} \mathrm{l} \cdot 44245, n_{\mathrm{F}} 1 \cdot 44823$, $n_{\mathrm{G}^{\prime}} 1 \cdot 45249 ; R_{\mathrm{G}} 41 \cdot 21, R_{\mathrm{D}} 41 \cdot 40, R_{\mathrm{F}} 41 \cdot 86, R_{\mathrm{G}^{\prime}} 42 \cdot 21 ; M n_{\mathrm{D}}^{20^{\circ}} 266.93$. Densities determined : $d_{4^{\circ}}^{20}$ $1 \cdot 1848, d_{4^{4}}^{4 \cdot 5^{\circ}} 1 \cdot 1600, d_{4^{\circ}}^{60 \cdot 9^{\circ}} 1 \cdot 1384, d_{4^{8 .}}^{8 \cdot 6^{\circ}} 1 \cdot 1102$. Apparatus D.

19.8°	10.46	$1 \cdot 1850$	30.61	367.3	60.9°	9.36	$1 \cdot 1384$	26.31	$368 \cdot 2$
27.5	$10 \cdot 24$	$1 \cdot 1764$	29.75	367.4	86.7	8.74	1.1090	23.94	$369 \cdot 0$
41.6	9.86	1.1599	28.24	367.8				Mean 367.9	

549. Methyl trichloroacetate. B. p. $152^{\circ} / 758 \mathrm{~mm}$.; $M 177 \cdot 43$; $n_{\mathrm{D}} 1 \cdot 45448, n_{\mathrm{D}} 1 \cdot 45707, n_{\mathrm{F}} 1 \cdot 46337$, $n_{G^{\prime}} 1 \cdot 46808 ; R_{\mathrm{C}} 32 \cdot 31, R_{\mathrm{D}} 32 \cdot 47, R_{\mathrm{F}} 32 \cdot 86, R_{G^{\prime}} 33 \cdot 14 ; M n_{\mathrm{D}}^{200^{\circ}} 258 \cdot 53$. Densities determined: $d_{4^{2}} 0^{\circ}$ $1 \cdot 4884, d_{4^{\cdot}}^{41 \cdot 6^{\circ}} 1 \cdot 4564, d_{4^{\circ}}^{60 \cdot 1 \cdot} 1 \cdot 4290, d_{4^{6}}^{8 \cdot \cdot 7^{\circ}} 1 \cdot 3901$. Apparatus A.

13.3°	12.09	1.4984	33.92	285.8	61.2°	10.53	1.4274	28.14	286.3
18.3	11.95	1.4909	33.36	286.0	86.3	9.74	1.3892	25.34	286.5
41.5	11.22	1.4565	30.60	286.5				Mean 286.2	

550. Ethyl trichloroacetate. B. p. $166^{\circ} / 755 ; M 191 \cdot 46 ; n_{C} 1 \cdot 44747, n_{D} 1 \cdot 44997, n_{\mathrm{F}} 1.45608, n_{\mathrm{G}}$, $1 \cdot 46059 ; R_{\mathrm{C}} 37 \cdot 11, R_{\mathrm{D}} 37 \cdot 28, R_{\mathrm{F}} 37 \cdot 72, R_{\mathrm{G}^{\prime}} 38 \cdot 04 ; M n_{\mathrm{D}}^{20^{\circ}} 277 \cdot 62$. Densities determined : $d_{4}^{20{ }^{\circ}} 1 \cdot 3800$,

$15 \cdot 3^{\circ}$	$9 \cdot 16$	$1 \cdot 3864$	$31 \cdot 36$	$326 \cdot 8$	$41 \cdot 4^{\circ}$	$8 \cdot 52$	$1 \cdot 3509$	$28 \cdot 42$	$327 \cdot 2$
$18 \cdot 9$	$9 \cdot 08$	$1 \cdot 3815$	30.98	$327 \cdot 0$	$60 \cdot 8$	$8 \cdot 04$	$1 \cdot 3247$	$26 \cdot 30$	$327 \cdot 2$
$23 \cdot 1$	$9 \cdot 00$	$1 \cdot 3757$	30.58	$327 \cdot 1$	$86 \cdot 5$	$7 \cdot 48$	$1 \cdot 2883$	$23 \cdot 80$	$328 \cdot 2$

Mean 327.3
551. n-Propyl trichloroacetate. B. p. $68^{\circ} / 8.5 \mathrm{~mm} . ; M 205 \cdot 49 ; n_{\mathrm{C}} \mathrm{l} \cdot 44810, n_{\mathrm{D}} \mathrm{l} \cdot 45057, n_{\mathrm{F}} \mathrm{l} \cdot 45666$, $n_{G^{\prime}} 1 \cdot 46113 ; R_{\mathrm{G}} 41 \cdot 60, R_{\mathrm{D}} 41 \cdot 80, R_{\mathrm{F}} 42 \cdot 29, R_{\mathrm{G}^{\prime}} 42 \cdot 64 ; M n_{\mathrm{D}}^{20^{\circ}} 298 \cdot 08$. Densities determined : $d_{4^{2}} 0^{\circ}$ $1 \cdot 3225, d_{4^{\circ}}^{41 \cdot 9^{\circ}} 1 \cdot 2936, d_{4}^{61 \cdot 7^{\circ}} 1 \cdot 2685, d_{4}^{85 \cdot 6^{\circ}} 1 \cdot 2385$. Apparatus A.

17.9°	$12 \cdot 39$	$1 \cdot 3252$	$30 \cdot 75$	$365 \cdot 1$	$42 \cdot 0^{\circ}$	$11 \cdot 54$	$1 \cdot 2935$	27.95	$365 \cdot 3$
$21 \cdot 5$	$12 \cdot 25$	$1 \cdot 3205$	$30 \cdot 29$	$365 \cdot 1$	$62 \cdot 9$	$10 \cdot 88$	$1 \cdot 2669$	$25 \cdot 81$	$365 \cdot 6$
$25 \cdot 8$	$12 \cdot 12$	$1 \cdot 3150$	$29 \cdot 84$	$365 \cdot 2$	$87 \cdot 8$	$10 \cdot 08$	$1 \cdot 2356$	23.32	$365 \cdot 5$

Mean $365 \cdot 3$
552. n -Butyl trichloroacetate. B. p. $81.5^{\circ} / 7.5 \mathrm{~mm}$.; $M 219.51 ; n_{\mathrm{C}} 1.44941, n_{\mathrm{D}} \mathrm{l} \cdot 45187, n_{\mathrm{F}} 1 \cdot 45792$, $n_{G^{\prime}} 1 \cdot 46250 ; R_{\mathrm{C}} 46 \cdot 23, R_{\mathrm{D}} 46 \cdot 45, R_{\mathrm{F}} 46.98, R_{\mathrm{G}^{\prime}} 47.39 ; M n_{\mathrm{D}}^{20^{\circ}} 318.70$. Densities determined: $d_{40^{20}}{ }^{20}$ $\mathrm{I} \cdot 2747, d_{4^{\circ}}^{40 \cdot 1^{\circ}} 1 \cdot 2505, d_{1}^{59 \cdot 5^{\circ}} 1 \cdot 2278, d_{4^{84} \cdot 8^{\circ}} 1 \cdot 1979$. Apparatus A.

$13 \cdot 3^{\circ}$	$12 \cdot 85$	1.2827	30.79	$403 \cdot 4$	$40 \cdot 8^{\circ}$	$12 \cdot 06$	$1 \cdot 2497$	$28 \cdot 22$	$404 \cdot 8$
$17 \cdot 1$	$12 \cdot 74$	$1 \cdot 2782$	30.49	$403 \cdot 6$	$61 \cdot 1$	$11 \cdot 37$	$1 \cdot 2259$	$26 \cdot 10$	$404 \cdot 7$
$22 \cdot 8$	$12 \cdot 62$	$1 \cdot 2720$	30.06	$404 \cdot 1$	$86 \cdot 9$	10.56	$1 \cdot 1954$	$23 \cdot 64$	$404 \cdot 9$
								Mean $404 \cdot 3$	

553. Methylene chloride. B. p. $40^{\circ} / 763 \mathrm{~mm}$.; $M 84.95$; $n_{\mathrm{O}} \mathrm{I} \cdot 42214, n_{\mathrm{D}} \mathrm{I} \cdot 42456, n_{\mathrm{F}} \mathrm{I} \cdot 43034, n_{\mathrm{G}}$ $1.43470 ; R_{\mathrm{D}} 16 \cdot 30, R_{\mathrm{D}} 16.38, R_{\mathrm{F}} 16 \cdot 58, R_{\mathrm{G}^{\prime}} 16.72 ; M n_{\mathrm{D}}^{20^{\circ}} 120.80$. Densities determined: $d_{40^{20}} 1 \cdot 3247$, $d_{4 \cdot}^{25 \cdot 0^{\circ}} 1 \cdot 3169$. Apparatus A.

19.3°	11.27	1.3258	27.98	147.5	26.9°	10.97	1.3139	26.99	147.6
23.3	11.07	1.3195	27.35	147.4				Mean 147.5	

554. Methylene bromide. B. p. $97^{\circ} / 760 \mathrm{~mm}$.; $M 173.86$; $n_{\mathrm{O}} \mathrm{l} .53707, n_{\mathrm{D}} \mathrm{l} .54119, n_{\mathrm{F}} \mathrm{l} .55177, n_{\mathrm{G}^{\prime}}$ $1.55996 ; R_{\mathrm{G}} 21 \cdot 76, R_{\mathrm{D}} 21 \cdot 90, R_{\mathrm{F}} 22 \cdot 25 ; R_{\mathrm{G}^{\prime}} 22 \cdot 53$; $M n_{\mathrm{D}}^{20^{\circ}} 267 \cdot 95$. Densities determined : $d_{40^{\circ}} 2 \cdot 4956$, $d_{4 \cdot}^{4 \cdot} 0^{\circ} 2 \cdot 4405, d_{4}^{61 \cdot} \cdot 6^{\circ} 2 \cdot 3911, d_{4}^{86 \cdot 1^{\circ}} 2 \cdot 3266$. Apparatus A.

18.4°	8.55	2.4997	40.02	$174 \cdot 9$	$60 \cdot 5^{\circ}$	$7 \cdot 50$	2.3939	$33 \cdot 61$	$175 \cdot 0$
$41 \cdot 0$	8.04	2.4430	36.78	$175 \cdot 3$	$85 \cdot 4$	6.91	2.3284	$30 \cdot 13$	$175 \cdot 2$
									Mean $175 \cdot 1$

555. Methylene ${ }^{\text {; }}$) dide. B. p. $80^{\circ} / 25 \mathrm{~mm}$.; $M 267.87$. Densities determined : $d_{40}^{200} 3 \cdot 3240$, $d_{4^{1}}^{41 \cdot 8^{\circ}}$ $3 \cdot 2692, d_{9^{6}}^{60 \cdot 9^{\circ}} 3 \cdot 2204, d_{9}^{86 \cdot 8^{\circ}} 3 \cdot 1550$. The results for the surface-tension measurements were unsatisfactory and the refractive indices were outside the range of the prisms available for the Pulfrich refractometer. The $d_{40^{2}}{ }^{\circ}$ value was in good agreement with the figure interpolated from the results of Timmermans and Hennaut-Roland (J. Chim. physique, 1932, 28, 529) ; their values for the refractive indices, interpolated to 20°, are $n_{\mathrm{C}} \mathrm{I} \cdot 73098, n_{\mathrm{D}} \mathrm{I} \cdot 74108$, $n_{\mathrm{F}} \mathrm{I} \cdot 76826$ and give $R_{\mathrm{C}} 32 \cdot 20, R_{\mathrm{D}} 32 \cdot 54, R_{\mathrm{F}} 33 \cdot 43, M n_{\mathbf{D}}^{30^{\circ}} 466 \cdot 39$.
556. Ethylidene chloride. B. p. $57.5^{\circ} / 761 \mathrm{~mm}$; $M 98.97$; $n_{\mathrm{O}} \mathrm{l} \cdot 41369, n_{\mathrm{D}} \mathrm{I} \cdot 41596, n_{\boldsymbol{F}} 1.42157$, $n_{0^{\prime}} 1 \cdot 42572 ; R_{\mathrm{O}} 20.99, R_{\mathrm{D}} 21 \cdot 09, R_{F} 21 \cdot 34, R_{G^{\prime}} 21.52 ; M n_{\mathrm{D}}^{20^{\circ}} 140 \cdot 14$. Densities determined: $d_{0^{2}}^{20^{\circ}}$ $1 \cdot 1776, d_{4}^{4 \cdot 4^{\circ}}{ }^{1} \cdot 1535$. Apparatus A.

t.	H.	d°	γ.	P.	t.	H.	$d^{\text {tio. }}$.	γ.	P.
$17 \cdot 1^{\circ}$	11.33	1-1809	$25 \cdot 05$	$187 \cdot 6$	$41 \cdot 1^{\circ}$	$10 \cdot 26$	$1 \cdot 1538$	22.17	187.9
$23 \cdot 3$	11.01	$1 \cdot 1739$	24.20	$187 \cdot 3$					$187 \cdot 6$

557. s-Tetrachloroethane. B. p. $147^{\circ} / 770 \mathrm{~mm} . ; M 167.88 ; n_{\mathrm{C}} 1 \cdot 49165, n_{\mathrm{D}} 1 \cdot 49437, n_{\mathrm{F}} 1.50128$, $n_{G^{\prime}} 1 \cdot 50645 ; R_{\mathrm{G}} 30 \cdot 46, R_{\mathrm{D}} 30 \cdot 60, R_{\mathrm{F}} 30 \cdot 96, R_{\mathrm{G}^{\prime}} 31 \cdot 23$; $M n_{\mathrm{D}}^{20^{\circ}} 250 \cdot 88$. Densities determined : $d_{6^{20}}$ $1 \cdot 5984, d_{4^{2} \cdot 9^{\circ}}{ }^{4} \cdot 5640, d_{4}^{61 \cdot 6^{\circ}}{ }^{1} \cdot 5349, d_{4^{87} \cdot 6^{\circ}} 1 \cdot 4954$. Apparatus A.

17.2°	12.21	1.6027	36.64	257.7	60.3°	10.75	1.5369	30.91	$257 \cdot 6$
20.9	12.09	1.5970	36.15	257.8	86.2	9.97	1.4975	27.96	257.8
40.4	11.43	1.5669	33.54	257.8				Mean 257.7	

558. Chloroform. B. p. $61.5^{\circ} / 765 \mathrm{~mm} . ; M 119 \cdot 40 ; n_{\mathrm{C}} 1 \cdot 44353, n_{\mathrm{D}} 1 \cdot 44611, n_{\mathrm{F}} \mathrm{I} \cdot 45232, n_{\mathrm{G}^{\prime}} \mathrm{I} \cdot 45700$;
 1-4521. Apparatus A.

15.3°	9.93	1.4993	27.88	183.0	$26 \cdot 2^{\circ}$	9.62	1.4787	$26 \cdot 64$	183.4
17.5	9.87	1.4951	27.63	183.1	$40 \cdot 1$	9.07	1.4525	$24 \cdot 67$	183.4
								Mean	183.2

559. Methylchloroform. B. p. $73.5^{\circ} / 758 \mathrm{~mm} . ; \quad$ 133.42; $n_{\mathrm{O}} 1.43574, n_{\mathrm{D}} \mathrm{I} \cdot 43832, n_{\mathrm{F}} \mathrm{I} \cdot 44433$, $n_{G^{\prime}} 1.44851 ; R_{\mathrm{G}} 26.06, R_{\mathrm{D}} 26 \cdot 20, R_{\mathrm{F}} 26.51, R_{G^{\prime}} 26.73 ; M n_{\mathrm{D}}^{20^{\circ}} 191.90$. Densities determined: $d_{4^{2}}^{20^{\circ}}$ $1 \cdot 3376, d_{4^{40} 8^{\circ}} \mathrm{I} \cdot 303 \mathrm{I}, d_{1^{62} \cdot 5^{\circ}} \mathrm{I} \cdot 2684$. Apparatus E.

21.0°	8.25	1.3360	$25 \cdot 67$	224.8	40.9°	$7 \cdot 60$	1.3029	$23 \cdot 06$	$224 \cdot 8$
28.3	8.03	1.3239	24.76	$224 \cdot 8$	60.6	$7 \cdot 00$	1.2712	20.72	224.5
								Mean $224 \cdot 7$	

560. Carbon tetrachloride. B. p. $76.5^{\circ} / 766 \mathrm{~mm}$.; $M 153.84$; $n_{\mathrm{D}} 1.45763, n_{\mathrm{D}} 1.46025, n_{\mathrm{F}} 1.46706$, $n_{G} \cdot 1 \cdot 47194 ; R_{\mathrm{G}} 26 \cdot 31, R_{\mathrm{D}} 26 \cdot 45, R_{\mathrm{F}} 26 \cdot 86, R_{G^{\prime}} 27 \cdot 08 ; M n_{\mathbf{D}}^{20^{\circ}} 224 \cdot 65$. Densities determined: $d^{20^{\circ}}$ ${ }_{1} \cdot 5941$, $d_{4}^{40 \cdot 8^{\circ}}{ }_{1} \cdot 5551$, $d_{4}^{57} \cdot 8^{\circ}{ }_{1 \cdot 5228}$. Apparatus A.

20.1°	9.25	1.5939	27.61	221.2	40.8°	8.44	1.5551	24.58	220.5
24.9	9.16	1.5848	27.18	221.1	59.5	7.92	1.5196	22.54	221.0
								Mean $221 \cdot 0$	

561. Ethylidene bromide. B. p. $108^{\circ} / 771 \mathrm{~mm}$; $M 187.89$; $n_{\mathrm{O}} 1.50849, n_{\mathrm{D}} 1.51223, n_{\mathrm{F}} 1 \cdot 52167$, $n_{G^{\prime}} 1 \cdot 52917 ; R_{\mathrm{O}} 26 \cdot 67, R_{\mathrm{D}} 26 \cdot 63, R_{\mathrm{F}} 27 \cdot 25, R_{G^{\prime}} 27 \cdot 58 ; M n_{\mathrm{D}}^{20^{\circ}} 284 \cdot 13$. Densities determined : $d_{0^{20}}^{20^{\circ}}$ $2 \cdot 1018, d_{4}^{42 \cdot 4^{\circ}} 2 \cdot 0540, d_{4}^{60 \cdot 0^{\circ}} 2 \cdot 0129$. Apparatus A.

16.3°	8.64	$2 \cdot 1100$	$34 \cdot 14$	$215 \cdot 2$	$62 \cdot 4^{\circ}$	7.49	2.0076	$28 \cdot 16$	$215 \cdot 6$
$41 \cdot 2$	8.04	2.0562	30.96	215.5				Mean $215 \cdot 4$	

562. s-Tetrabromoethane. B. p. $124^{\circ} / 19 \mathrm{~mm}$; $M 345.70 ; n_{\mathrm{C}} 1 \cdot 63011, n_{\mathrm{D}} \mathrm{l} \cdot 63533, n_{\mathrm{F}} 1.64847$;
 $2 \cdot 8625, d_{4 \cdot}^{87} \cdot 5^{\circ} 2 \cdot 8066$. The results of the surface-tension measurements by the capillary rise method were not entirely satisfactory; it is hoped to repeat them by the method of maximum bubble pressure.
563. Bromoform. B. p. $148.5^{\circ} / 761 \mathrm{~mm}$.; $M 252.77$; $n_{\mathrm{C}} \mathrm{I} \cdot 59256, n_{\mathrm{D}} 1.59763, n_{\mathrm{F}} 1.61059, n_{\mathrm{G}^{\prime}} 1.62084$; $R_{\mathrm{G}} 29 \cdot 65, R_{\mathrm{D}} 29 \cdot 86, R_{\mathrm{F}} 30 \cdot 38, R_{G}, 30 \cdot 79 ; M n_{\mathrm{D}}^{20^{\circ}} 403 \cdot 83$. Densities determined : $d_{4^{20}}{ }^{\circ} 2 \cdot 8870, d_{4}^{40 \cdot 0^{\circ}} 2 \cdot 8400$, $d_{6^{8 .}}^{89 \cdot 0^{\circ}} 2 \cdot 7935, d_{6^{8.9}}^{8.9} 2 \cdot 7251$. Apparatus D.

24.8°	6.35	2.8755	$45 \cdot 10$	227.8	60.1°	5.87	2.7909	40.46	228.4
41.7	6.04	2.8359	42.30	227.3				Mean 227.8	

564. 1:2:3-Tribromopropane. B. p. $102^{\circ} / 18 \mathrm{~mm} . ; M 280.83$; $n_{\mathrm{C}} 1.58191, n_{\mathrm{D}} 1.58633, n_{\mathrm{F}} 1.59728$, $n_{\mathrm{G}} \cdot 1 \cdot 6055 \mathrm{I} ; R_{\mathrm{C}} 38 \cdot 69, R_{\mathrm{D}} 38 \cdot 93, R_{\mathrm{F}} 39 \cdot 52, R_{\mathrm{G}^{\prime}} 39 \cdot 96 ; M n_{\mathrm{D}}^{20^{\circ}} 445 \cdot 48$. Densities determined: $d_{4^{2}}^{20^{\circ}}$

17.5°	10.07	2.4271	45.77	301.7	62.0°	9.19	2.3437	40.33	302.0
41.5	9.54	2.3859	42.62	301.5	87.7	8.58	2.2897	36.79	302.8

565. Ethyl orthoformate. B. p. $143^{\circ} / 765 \mathrm{~mm} . ; M 148.20 ; n_{\mathrm{O}} \mathrm{I} \cdot 38792, n_{\mathrm{D}} \mathrm{l} \cdot 38979, n_{\mathrm{F}} 1 \cdot 39428, n_{G^{\prime}}$ $1.39738 ; R_{\mathrm{C}} 39.13, R_{\mathrm{D}} 39.30, R_{\mathrm{F}} 39.71, R_{\mathrm{G}^{\prime}} 39.98 ; M n_{\mathrm{D}}^{20^{\circ}} 205.97$. Densities determined : $d_{\mathbf{4}^{20}} 0.8934$,

$17 \cdot 1^{\circ}$	10.81	0.8963	23.93	$365 \cdot 7$	$60 \cdot 7^{\circ}$	9.26	0.8530	19.50	365.2
21.9	$10 \cdot 68$	0.8915	23.51	$366 \cdot 1$	85.6	8.44	0.8262	$17 \cdot 22$	$365 \cdot 4$
40.7	9.91	0.8726	21.36	$365 \cdot 1$				Mean $365 \cdot 5$	

566. n-Propyl orthoformate. B. p. $91^{\circ} / 17 \mathrm{~mm}$; $M 190.28$; $n_{\mathrm{D}} \mathrm{I} \cdot 40512, n_{\mathrm{D}} \mathrm{l} \cdot 407 \mathrm{ll}, n_{\mathrm{F}} 1.41188$, $n_{\mathrm{G}} \mathrm{I} \cdot 41534$; $R_{\mathrm{C}} 53 \cdot 05, R_{\mathrm{D}} 53 \cdot 28, R_{\mathrm{F}} 53 \cdot 83, R_{\mathrm{G}^{\prime}} 54 \cdot 22 ; M n_{\mathrm{D}}^{20^{\circ}} 267.74$. Densities determined: $d_{4}^{200^{\circ}}$ $0 \cdot 8794, d_{4^{\circ}}^{41 \cdot 4^{\circ}} 0 \cdot 8605, d_{4^{6}}^{61 \cdot 0^{\circ}} 0 \cdot 8427, d_{4^{\circ}}^{8 \cdot} \cdot 9^{\circ} 0 \cdot 8204$. Apparatus D.

t.	H.	$d^{t^{\circ}}{ }^{\circ}$.	γ.	P.	t.	H.	$d^{\text {tio }}$.	γ.	P.
$13.4{ }^{\circ}$	11.64	0.8853	25.45	$482 \cdot 7$	41.4°	$10 \cdot 72$	0.8605	22.78	$483 \cdot 1$
$17 \cdot 4$	11.50	0.8817	25.04	$482 \cdot 8$	61.0	$10 \cdot 09$	0.8427	21.00	$483 \cdot 4$
$20 \cdot 0$	11.41	0.8794	24.78	$482 \cdot 8$	$86 \cdot 8$	$9 \cdot 25$	0.8196	18.72	$482 \cdot 9$
								Mean $483 \cdot 0$	

567. n-Butyl orthoformate. B. p. $127^{\circ} / 16 \mathrm{~mm}$.; $M 232 \cdot 35$; $n_{\mathrm{D}} \mathrm{I} \cdot 41603, n_{\mathrm{D}} \mathrm{I} \cdot 41806, n_{\mathrm{F}} \mathrm{I} \cdot 42302$, $n_{G^{\prime}} 1.42654 ; R_{\mathrm{G}} 66.92, R_{\mathrm{D}} 67 \cdot 21, R_{\mathrm{F}} 67 \cdot 90, R_{\mathrm{G}^{\prime}} 68 \cdot 40 ; M n_{\mathrm{D}}^{20^{\circ}} 329 \cdot 50$. Densities determined: $d_{4}^{20 \cdot}$

$17 \cdot 1^{\circ}$	$12 \cdot 02$	0.8732	25.92	$600 \cdot 4$	$41 \cdot 0^{\circ}$	$11 \cdot 25$	0.8543	$23 \cdot 68$	$600 \cdot 3$
$22 \cdot 0$	11.85	0.8697	$25 \cdot 45$	$600 \cdot 1$	$60 \cdot 9$	$10 \cdot 60$	0.8388	21.96	$599 \cdot 6$
27.8	11.72	0.8651	$25 \cdot 04$	$600 \cdot 8$	$86 \cdot 8$	9.88	0.8174	$19 \cdot 94$	$600 \cdot 7$

568. Thionyl chloride. B. p. $76 \cdot 5^{\circ} / 768 \mathrm{~mm}$.; $M 118.97$; $n_{\mathrm{O}} \mathrm{l} \cdot 51593, n_{\mathrm{D}} \mathrm{l} .52048, n_{\mathrm{F}} \mathrm{I} \cdot 53310, n_{\mathrm{C}^{\prime}}$ I. 5432 (somewhat doubtful); $R_{\mathrm{G}} 21 \cdot 95, R_{\mathrm{D}} 22 \cdot 12, \mathrm{R}_{\mathbf{F}} 22 \cdot 56, R_{\mathrm{G}} 22 \cdot 98 ; M_{\mathbf{D}}^{20^{\circ}} 180 \cdot 06$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 6366, d_{4^{\circ}}^{41^{\circ}} 1 \cdot 5972, d_{4^{58}}^{58 \cdot 9^{\circ}} 1 \cdot 5645$. Apparatus E.

[Sugden, Reed, and Wilkins (loc. cit.) find $d_{4^{20}}^{20^{\circ}}$ (extrap.) 1.645 and P 174.5.]
569. Sulphuryl chloride. B. p. $69.5^{\circ} / 775 \mathrm{~mm} . ; M 134 \cdot 97$; $n_{\mathrm{O}} \mathrm{I} \cdot 44049, n_{\mathrm{D}} \mathrm{I} \cdot 44325, n_{\mathrm{F}} \mathrm{I} 45005$, $n_{G^{\prime}} 1 \cdot 45508 ; R_{\mathrm{G}} 21 \cdot 31, R_{\mathrm{D}} 21 \cdot 43, R_{\mathrm{F}} 21 \cdot 71, R_{\mathrm{G}^{\prime}} 21 \cdot 92 ; M n_{\mathrm{D}}^{20^{\circ}} 194 \cdot 80$. Densities determined: $d_{4^{0}}^{20^{\circ}}$ $1 \cdot 6708, d_{1^{4} \cdot 8^{\circ}} 1 \cdot 6217$. Apparatus A.

$16 \cdot 1^{\circ}$	9.63	1.6796	30.29	188.5	$26 \cdot 6^{\circ}$	9.22	1.6560	28.59	188.6
17.9	9.59	1.6755	30.09	188.7	41.6	8.69	1.6221	26.39	187.7
								Mean	188.4

Sugden, Reed, and Wilkins (loc. cit.) give $d_{4^{2}}^{20^{\circ}}$ (extrap.) I•682, $P 193 \cdot 3$ for a specimen prepared from chlorosulphonic acid. In view of the disparity in density and large difference in surface tension from the author's results, another specimen of pure sulphuryl chloride was prepared from an independent source of commercially pure material by careful fractionation through a Widmer column in an all-glass apparatus; the sample for the surface-tension measurements was collected directly in the surface-tension apparatus and the usual precautions against exposure to the atmosphere were taken throughout. The original results were adequately confirmed and it would appear that Sugden, Reed, and Wilkins's sample was impure. The results for the highly purified sample were as follows: b. p. $69^{\circ} / 763 \mathrm{~mm}$.; $n_{\mathrm{C}} \mathrm{I} \cdot 44065$, $n_{\mathrm{D}} \mathrm{I} \cdot 44340, n_{\mathrm{F}} 1 \cdot 45024, n_{G^{\prime}} \mathrm{I} \cdot 45533 ; R_{\mathrm{G}} 21 \cdot 31, R_{\mathrm{D}} 21 \cdot 43, R_{\mathrm{F}} 21 \cdot 71, R_{\mathrm{G}^{\prime}} 21 \cdot 93 ; M n_{\mathrm{D}}^{20^{\circ}} 194 \cdot 82$. Densities determined : $d_{4^{20}}^{20} 1 \cdot 6712, d_{4^{0}}^{40.6^{\circ}} 1 \cdot 6264$. Apparatus F.

18.7°	7.65	1.6740	29.82	188.4	40.5°	7.08	1.6266	26.81	189.0
25.3	7.36	1.6596	28.44	187.9				Mean	188.4

5\%0. Phosphorus trichloride. B. p. $75^{\circ} / 772 \mathrm{~mm}$.; M 137.35; $n_{\mathrm{O}} \mathrm{I} \cdot 51039, n_{\mathrm{D}} \mathrm{l} .51473, n_{\mathrm{F}} 1.52576$, $n_{G^{\prime}} 1.53467 ; R_{\mathrm{G}} 26.08, R_{\mathrm{D}} 26 \cdot 27, R_{\mathrm{F}} 26 \cdot 74, R_{\mathrm{G}^{\prime}} 27 \cdot 11 ; ~ M n_{\mathrm{D}}^{200} 208.04$. Densities determined: $d_{4^{0}}^{20^{\circ}}$ $1.5761, d_{4^{3}}^{43.5^{\circ}} 1 \cdot 5332, d_{4^{6}}^{61 \cdot 5^{\circ}} 1.5008$. Apparatus E.

$15 \cdot 3^{\circ}$	7.92	1.5847	29.23	201.5	$41 \cdot 6^{\circ}$	$7 \cdot 23$	1.5367	25.88	201.8
19.2	7.83	1.5776	28.77	201.7	60.3	6.72	1.5030	23.52	201.7
25.5	7.62	1.5660	27.79	201.5				Mean 201.6	

571. Phosphorus oxychloride. B. p. $106 \cdot 5^{\circ} / 775 \mathrm{~mm} . ; M 153 \cdot 35$; $n_{\mathrm{O}} \mathrm{l} \cdot 45917, n_{\mathrm{D}} \mathrm{l} \cdot 46085, n_{\mathrm{F}} \mathrm{l} \cdot 46746$, $n_{G^{*}} 1 \cdot 47240 ; R_{\mathrm{G}} 24.97, R_{\mathrm{D}} 25 \cdot 05, R_{\mathrm{F}} 25 \cdot 36, R_{\mathrm{G}^{\prime}} 25 \cdot 59 ; M n_{\mathrm{D}}^{20^{*}} 224 \cdot 03$. Densities determined : $d_{\mathbf{4}^{2} 0^{*}}$ $1 \cdot 6795, d_{4}^{40 \cdot 7^{\circ}} \mathrm{I} \cdot 6414, d_{4^{60}}^{60} 1 \cdot 6045, d_{4}^{85} \cdot 1^{\circ} 1 \cdot 5580$. Apparatus A.

14.9°	10.54	1.6890	33.33	218.2	61.9°	9.09	1.6025	27.28	218.9
20.5	10.40	1.6786	32.69	218.4	86.4	8.33	1.5556	24.26	$219 \cdot 2$
41.2	9.72	1.6405	29.86	218.5				Mean 218.6	

[Sugden, Reed, and Wilkins (loc. cit.) give $d_{\mathbf{4}^{20}}{ }^{\circ}$ (extrap.) $1 \cdot 680, P 217 \cdot 6$.]
572. Phosphorus tribromide. B. p. $171 \cdot 5^{\circ} / 763 \mathrm{~mm} . ; M 270.73 ; n_{\mathrm{D}} 1.69632 ; R_{\mathrm{D}} 36.07$; $M n_{\mathrm{D}}^{20^{\circ}}$

$15 \cdot 6^{\circ}$	7.97	$2 \cdot 9006$	$43 \cdot 29$	$239 \cdot 4$	$59 \cdot 5^{\circ}$	$7 \cdot 18$	$2 \cdot 7977$	$37 \cdot 61$	$239 \cdot 7$
41.4	7.55	$2 \cdot 8411$	$40 \cdot 17$	$239 \cdot 8$				Mean $239 \cdot 7$	

[Sugden, Reed, and Wilkins (loc. cit.) give $d_{40^{20}}{ }^{\circ}$ (extrap.) 2•893, $\left.P 242 \cdot 9.\right]$
573. Dimethylnitrosoamine. B. p. $151^{\circ} / 767 \mathrm{~mm}$; $M 74.09$; $n_{\mathrm{O}} \mathrm{I} \cdot 43210, n_{\mathrm{D}} \mathrm{I} \cdot 43580, n_{\mathrm{F}} \mathrm{l} \cdot 44544$, $n_{G^{\prime}} 1 \cdot 45360$ (line faint); R_{G} 19•12, $R_{\mathrm{D}} 19 \cdot 27, R_{\mathrm{F}} 19 \cdot 64, R_{\mathrm{G}^{\prime}} 19 \cdot 95 ; M n_{\mathrm{D}}^{20^{\circ}} 106 \cdot 38$. Densities determined :

t.	H.	$d_{4}^{i^{\circ}}{ }^{\circ}$.	γ.	P.	t.	H.	$d_{4}{ }^{\text {a }}$.	γ.	P.
$16.3{ }^{\circ}$	15.55	1.0086	$38 \cdot 73$	$183 \cdot 3$	$60 \cdot 8^{\circ}$	13.96	0.9660	$33 \cdot 29$	$184 \cdot 2$
21.9	$15 \cdot 44$	1.0031	38.25	$183 \cdot 7$	$86 \cdot 8$	12.97	0.9396	$30 \cdot 10$	$184 \cdot 7$
$40 \cdot 8$	I4.69	0.9854	$35 \cdot 75$	$183 \cdot 8$					$183 \cdot 9$

574. Diethylnitrosoamine. B. p. $174 \cdot 5^{\circ} / 777 \mathrm{~mm} . ; M 102 \cdot 14$; $n_{\mathrm{O}} \mathrm{l} \cdot 43468, n_{\mathrm{D}} \mathrm{l} \cdot 43791, n_{\mathrm{F}} \mathrm{l} \cdot 44640$, $n_{G^{\prime}} 1 \cdot 45347 ; R_{\mathrm{G}} 28 \cdot 25, R_{\mathrm{D}} 28 \cdot 43, R_{\mathrm{F}} 28 \cdot 91, R_{G^{\prime}} 29 \cdot 31 ; M n_{\mathrm{D}}^{20^{\circ}} 146 \cdot 87$. Densities determined : $d_{4}^{200^{\circ}}$ $0.9428, d_{4}^{40 \cdot 3^{\circ}} 0.9255, d_{4}^{60 \cdot 0^{\circ}} 0.9082, d_{4}^{86 \cdot} 7^{\circ} 0.8842$. Apparatus D.

$16 \cdot 4^{\circ}$	$14 \cdot 30$	0.9459	33.40	259.6	$63 \cdot 0^{\circ}$	12.81	0.9108	28.81	259.8
$21 \cdot 2$	$14 \cdot 16$	0.9417	$32 \cdot 93$	259.8	87.8	11.95	0.8832	$26 \cdot 06$	$261 \cdot 3$
41.8	13.52	0.9242	30.86	260.5				Mean 259.8	

575. Di-n-propylnitrosoamine. B. p. $89^{\circ} / 13 \mathrm{~mm}$.; $M 130 \cdot 19$; $n_{\mathrm{O}} \mathrm{l} \cdot 44059, n_{\mathrm{D}} 1 \cdot 44365, n_{\mathrm{F}} \mathrm{l} \cdot 45155$, $n_{G^{\prime}} 1.45804 ; R_{\mathrm{C}} 37 \cdot 50, R_{\mathrm{D}} 37.73, R_{\mathrm{F}} 38 \cdot 31, R_{\mathrm{G}^{\prime}} 38 \cdot 78 ; M n_{\mathrm{D}}^{20^{\circ}} 187.96$. Densities determined : $d_{4^{2}}^{20^{\circ}}$ $0 \cdot 9160, d_{1^{41} \cdot 6^{\circ}}^{0.8992}, d_{4^{61 \cdot} \cdot 1^{\circ}}^{0.8830}, d_{4^{86} \cdot 9^{\circ}}^{0.8624}$. Apparatus A.

$19 \cdot 1^{\circ}$	18.46	0.9167	$31 \cdot 69$	$337 \cdot 0$	$61 \cdot 2^{\circ}$	$16 \cdot 69$	0.8829	27.59	$338 \cdot 0$
$25 \cdot 0$	18.25	0.9120	$31 \cdot 17$	$337 \cdot 3$	86.5	15.76	0.8627	$25 \cdot 46$	$339 \cdot 0$
41.9	17.58	0.8990	29.59	337.8				Mean 337.8	

576. Di-n-butylnitrosoamine. B. p. 125-125.5 $/ 21 \mathrm{~mm}$.; $M 158.24 ; n_{\mathrm{c}} \mathrm{l} \cdot 44454, n_{\mathrm{D}} \mathrm{l} \cdot 44746$, $n_{\mathrm{F}} \mathrm{I} \cdot 45497, n_{\mathrm{G}^{\prime}} \mathrm{I} \cdot 46109 ; R_{\mathrm{C}} 46 \cdot 70, R_{\mathrm{D}} 46 \cdot 98, R_{\mathrm{F}} 47 \cdot 66, R_{\mathrm{G}}, 48 \cdot 21 ; n_{\mathrm{D}}^{20^{\circ}} 229 \cdot 05$. Densities determined :

$17 \cdot 3^{\circ}$	13.72	0.9030	$30 \cdot 60$	$412 \cdot 1$	$62 \cdot 3^{\circ}$	$12 \cdot 45$	0.8682	$26 \cdot 69$	$414 \cdot 3$
$21 \cdot 0$	$13 \cdot 61$	0.9001	$30 \cdot 25$	$412 \cdot 3$	88.0	$11 \cdot 67$	0.8487	$24 \cdot 46$	$414 \cdot 6$
$42 \cdot 0$	$13 \cdot 06$	0.8837	28.46	$413 \cdot 6$				Mean $413 \cdot 4$	

5ry. Nitromethane. B. p. $101^{\circ} / 762 \mathrm{~mm} . ; \operatorname{M1.04;} n_{\mathrm{O}} \mathrm{I} \cdot 37895, n_{\mathrm{D}} \mathrm{I} \cdot 38152, n_{\mathrm{F}} \mathrm{I} \cdot 38778, n_{\mathrm{G}} \mathrm{I} \cdot 39270$; $R_{\mathrm{C}} 12 \cdot 29, R_{\mathrm{D}} 12 \cdot 36, R_{\mathrm{F}} 12 \cdot 54, R_{G^{\prime}} 12 \cdot 69 ; M n_{\mathrm{D}}^{20^{\circ}} 83 \cdot 55$. Densities determined : $d_{4}^{20.0^{\circ}} 1 \cdot 1371, d_{4^{4} \cdot 1^{\circ}}{ }^{1} \cdot 1081$, $d_{4 .}^{60 \cdot 9^{\circ}} 1 \cdot 0815$. Apparatus A.

17.3°	$17 \cdot 43$	1-1408	$37 \cdot 23$	$132 \cdot 2$	41.2°	16.24	1-1080	$33 \cdot 69$	133.0
20.7	$17 \cdot 26$	$1 \cdot 1361$	36.72	$132 \cdot 3$	$60 \cdot 9$	$15 \cdot 25$	1-0815	$30 \cdot 88$	133.1
25.9	$17 \cdot 06$	1-1290	$36 \cdot 07$	$132 \cdot 5$					$132 \cdot 6$

578. Nitroethane. B. p. $114^{\circ} / 765 \mathrm{~mm} . ; \quad M .75 \cdot 08 ; n_{\mathrm{C}} \mathrm{l} \cdot 38936, n_{\mathrm{D}} \mathrm{I} \cdot 39173, n_{\mathrm{F}} \mathrm{l} \cdot 39765, n_{\boldsymbol{a}^{\prime}} 1 \cdot 40212$; $R_{\mathrm{G}} 16 \cdot 93, R_{\mathrm{D}} 17 \cdot 02, R_{\mathrm{F}} 17 \cdot 25, R_{\mathrm{G}} 17 \cdot 42 ; M n_{\mathrm{D}}^{2{ }^{\circ}} 104 \cdot 49$. Densities determined : $d_{\mathbf{4}^{20}} 1 \cdot 0497, d_{4^{\circ}}^{41^{\circ}} 1 \cdot 0250$, $d_{4^{59} \cdot 8^{\circ}} 1 \cdot 0026, d_{4^{85}}^{85 \cdot 0^{\circ}} 0 \cdot 9726$. Apparatus D.

20.2°	$12 \cdot 42$	1.0477	$32 \cdot 14$	$170 \cdot 7$	$61 \cdot 4^{\circ}$	10.98	1.0007	$27 \cdot 14$	$171 \cdot 2$
$25 \cdot 0$	$12 \cdot 29$	1.0437	$31 \cdot 68$	$170 \cdot 7$	$87 \cdot 3$	10.03	0.9699	$24 \cdot 02$	$171 \cdot 6$
41.3	11.66	1.0247	29.50	$170 \cdot 8$				Mean $171 \cdot 0$	

579. 1-Nitro-n-propane. B. p. $130 \cdot 5^{\circ} / 761 \mathrm{~mm} . ; \quad$ 89.10; $n_{\mathrm{C}} \mathrm{l} \cdot 39816, n_{\mathrm{D}} \mathrm{l} \cdot 40130, n_{\mathrm{F}} \mathrm{l} \cdot 40639$, $n_{G^{\prime}} 1 \cdot 41083 ; R_{\mathrm{C}} 21 \cdot 50, R_{\mathrm{D}} 21 \cdot 64, R_{\mathrm{F}} 21 \cdot 89, R_{\mathrm{G}} \cdot 22 \cdot 15 ; M n_{\mathrm{D}}^{20^{*}} 124 \cdot 86$. Densities determined: $d_{40^{20}}^{20^{\circ}}$ $1 \cdot 0009, d_{4^{\circ}}^{41 \cdot 11^{\circ}} 0.9794, d_{4^{\circ}}^{61 \cdot \sigma^{\circ}} 0 \cdot 9573, d_{4^{8} \cdot 0^{\circ}}^{8} 0.9296$. Apparatus A.

$17 \cdot 1^{\circ}$	$16 \cdot 31$	$\mathrm{I} \cdot 0039$	$30 \cdot 66$	$208 \cdot 8$	$61 \cdot 7^{\circ}$	$14 \cdot 34$	0.9571	$25 \cdot 70$	$209 \cdot 6$
$20 \cdot 1$	$16 \cdot 13$	$1 \cdot 0008$	$30 \cdot 23$	$208 \cdot 8$	$86 \cdot 7$	13.25	0.9299	$23 \cdot 07$	$210 \cdot 0$
$41 \cdot 3$	$15 \cdot 32$	0.9792	28.09	$209 \cdot 5$				Mean 209.3	

580. 2-Nitro-n-propane. B. p. $119 \cdot 5^{\circ} / 752 \mathrm{~mm} . ; \quad$. $89 \cdot 10$; $n_{\mathrm{C}} \mathrm{l} \cdot 39196, n_{\mathrm{D}} \mathrm{l} \cdot 39426, n_{\mathrm{F}} 1 \cdot 39992$, $n_{G^{\prime}} 1 \cdot 40418 ; R_{\mathrm{G}} 21 \cdot 48, R_{\mathrm{D}} 21 \cdot 59, R_{\mathrm{F}} 21 \cdot 87, R_{\mathrm{G}^{\prime}} 22 \cdot 08 ; M n_{\mathrm{D}}^{20^{\circ}} 124 \cdot 23$. Densities determined: $d_{4^{20}}^{20}$

$21 \cdot 0^{\circ}$	$15 \cdot 74$	0.9865	29.08	$209 \cdot 7$	$61 \cdot 1^{\circ}$	$13 \cdot 87$	0.9445	$24 \cdot 53$	$209 \cdot 9$
$29 \cdot 1$	$15 \cdot 40$	0.9781	$28 \cdot 20$	$209 \cdot 9$	$86 \cdot 0$	12.73	0.9170	$21 \cdot 86$	$210 \cdot 1$
$41 \cdot 2$	$14 \cdot 80$	0.9656	$26 \cdot 76$	$209 \cdot 7$				Mean $209 \cdot 8$	

581. l-Nitro-n-butane. B. p. $151 \cdot 5-152.5^{\circ} / 780 \mathrm{~mm}$; M 103.12; $n_{\mathrm{c}} 1.40975, n_{\mathrm{D}} 1 \cdot 41028, n_{\mathrm{F}}$ ${ }_{1} \cdot 41613, n_{G^{\prime}} 1 \cdot 42048 ; R_{\mathrm{G}} 26 \cdot 20, R_{\mathrm{D}} 26 \cdot 33, R_{\mathrm{F}} 26 \cdot 65, R_{\mathrm{G}^{\prime}} 26 \cdot 90 ; M n_{\mathrm{D}}^{20} 145 \cdot 43$. Densities determined: $d_{4^{2}}^{20} 0.9710, d_{4}^{41 \cdot 2^{\circ}} 0.9514, d_{4}^{60 \cdot 0^{\circ}} 0.9335, d_{4}^{87 \cdot 0^{\circ}} 0.9067$. Apparatus A.

$15 \cdot 4^{\circ}$	$16 \cdot 34$	0.9753	$29 \cdot 84$	$247 \cdot 1$	$41 \cdot 6^{\circ}$	$15 \cdot 29$	0.9510	$27 \cdot 23$	$247 \cdot 7$
$20 \cdot 3$	$16 \cdot 15$	0.9707	$29 \cdot 35$	$247 \cdot 3$	$62 \cdot 1$	$14 \cdot 52$	0.9312	$25 \cdot 32$	$248 \cdot 4$
$25 \cdot 9$	$16 \cdot 05$	0.9654	$29 \cdot 01$	$247 \cdot 9$	$87 \cdot 5$	$13 \cdot 43$	$0 \cdot 9062$	$22 \cdot 79$	$248 \cdot 6$
								Mean $247 \cdot 8$	

582. 1-Nitro-n-pentane. B. p. $66^{\circ} / 16 \mathrm{~mm} . ; M 117.15$; $n_{\mathrm{O}} \mathrm{l}$-41516, $n_{\mathrm{D}} \mathrm{I} .41751, n_{\mathrm{F}} 1.42329, n_{\mathrm{G}^{\prime}}$ $1.42771 ; R_{\mathrm{O}} 30 \cdot 81, R_{\mathrm{D}} 30.96, R_{\mathrm{F}} 31 \cdot 34, R_{\mathrm{G}^{\prime}} 31 \cdot 62 ; M n_{\mathrm{D}}^{20^{\circ}} 166 \cdot 06$. Densities determined : $d_{4}^{20^{\circ}} 0.9525$, $d_{4^{\circ}}^{41 \cdot 6^{\circ}} 0 \cdot 9330, d_{4}^{63 \cdot 0^{\circ}} 0 \cdot 9137, d_{4^{\circ}}^{8 \cdot 0^{\circ}} 0 \cdot 8912$. Apparatus D.

t.	H.	d_{4}°.	γ.	P.	t.	H.	d_{4}°.	γ.	P.
17.0°	12.53	0.9552	29.55	$286 \cdot 0$	$62 \cdot 3^{\circ}$	$11 \cdot 19$	0.9143	$25 \cdot 27$	$287 \cdot 3$
$25 \cdot 3$	12.36	0.9477	28.93	286.7	88.3	10.40	0.8901	22.86	287.8
41.5	11.81	0.9331	27.21	286.8					Mean 286.9

583. 1-Nitro-n-hexane. B. p. $81.5^{\circ} / 15 \mathrm{~mm}$.; M 131-18; $n_{\mathrm{O}} \mathrm{I} \cdot 42111, n_{\mathrm{D}} 1.42346, n_{\mathrm{F}} 1.42930, n_{\mathrm{G}^{\prime}}$ $\mathrm{I} 43366 ; R_{\mathrm{O}} 35.41, R_{\mathrm{D}} 35.59, R_{\mathrm{F}} 36.01, R_{\mathbf{G}^{\prime}} 36.34 ; M n_{\mathrm{D}}^{20 \circ} 186.73$. Densities determined : $d_{4^{20}}^{20} 0.9396$,

20.5°	12.77	0.9392	29.62	325.8	62.5°	11.53	0.9044	25.75	326.7
42.2	12.07	0.9212	27.46	326.0	86.7	10.90	0.8835	23.78	327.9
								Mean 326.6	

584. Nitrobenzene. B. p. $207.5^{\circ} / 760 \mathrm{~mm} . ; M 123 \cdot 13$; $n_{\mathrm{C}} \mathrm{l} .54559, n_{\mathrm{D}} \mathrm{l} .55246, n_{\mathrm{F}} 1.57086, n_{\mathrm{G}}$ 1.58972 (line faint); $R_{\mathrm{D}} 32 \cdot 38, R_{\mathrm{D}} 32 \cdot 72, R_{\mathrm{F}} 33 \cdot 62, R_{\mathrm{G}^{\prime}} 34 \cdot 44 ; M n_{\mathrm{D}}^{20^{\circ}} 191 \cdot 13$. Densities determined: $d_{4 \cdot}^{20^{\circ}} 1 \cdot 2031, d_{4^{1} \cdot 5^{\circ}} 1 \cdot 1829, d_{4}^{61 \cdot 7^{\circ}} \mathrm{I} \cdot 1641, d_{4}^{88 \cdot 6^{6}} 1 \cdot 1402$. Apparatus A.

$16 \cdot 3^{\circ}$	$19 \cdot 72$	$1 \cdot 2066$	$44 \cdot 55$	$263 \cdot 6$	$60 \cdot 5^{\circ}$	$17 \cdot 94$	$1 \cdot 1652$	$39 \cdot 14$	$264 \cdot 3$
$19 \cdot 5$	$19 \cdot 56$	$1 \cdot 2036$	$44 \cdot 08$	$263 \cdot 6$	$86 \cdot 5$	16.86	$1 \cdot 1403$	$36 \cdot 00$	$264 \cdot 4$
40.9	$18 \cdot 69$	$1 \cdot 1834$	$41 \cdot 42$	$263 \cdot 9$				Mean $263 \cdot 9$	

585. n -Butyl nitrite. B. p. $27^{\circ} / 88 \mathrm{~mm}$.; $M 103 \cdot 12$; $n_{\mathrm{D}} \mathrm{l} \cdot 37463, n_{\mathrm{D}} \mathrm{l} \cdot 37683, n_{\mathrm{F}} 1 \cdot 38241, n_{\mathrm{G}^{\prime}} 1 \cdot 38678$; $R_{\mathrm{O}} 26 \cdot 73, R_{\mathrm{D}} 26 \cdot 87, R_{\mathrm{F}} 27 \cdot 22 ; R_{\mathrm{G}^{\prime}} 27 \cdot 50 ; M n_{\mathrm{D}}^{20^{\circ}} 141 \cdot 98$. Densities determined : $d_{4^{2}}^{20^{\circ}} 0 \cdot 8823, d_{\mathbf{4}^{40 \cdot 9^{\circ}}} 0 \cdot 8575$. Apparatus A.

13.5°	13.07	0.8900	21.78	250.3	23.6°	12.76	0.8780	20.98	251.4
17.7	12.96	0.8850	21.48	250.8	41.3	11.76	0.8570	18.87	$251 \cdot 1$
								Mean 250.9	

 $n_{\mathrm{G}} \mathrm{I} \cdot 39498, n_{\mathrm{G}^{\prime}} 1 \cdot 39935 ; R_{\mathrm{C}} 3 \mathrm{I} \cdot 28, R_{\mathrm{D}} 31 \cdot 44, R_{\mathrm{F}} 31 \cdot 84, R_{\mathrm{G}^{\prime}} 32 \cdot 16 ; n_{\mathrm{D}^{20}} 162 \cdot 76$. Densities determined : $d_{4^{2}}^{2 \cdot} 0 \cdot 8820, d_{4^{4}}^{40 \cdot 7^{\circ}} 0 \cdot 8603, d_{4^{6}}^{63 \cdot 7^{\circ}} 0 \cdot 8352$. Apparatus A.

13.4°	14.06	0.8890	23.41	289.8	41.5°	12.72	0.8595	20.47	289.9
$16 \cdot 5$	13.90	0.8857	23.05	289.8	58.2	11.83	0.8410	18.63	289.4
22.1	13.76	0.8798	22.67	290.5				Mean 289.9	

58%. n-Hexyl nitrite. B. p. $129 \cdot 5-130^{\circ} / 761 \mathrm{~mm}$. and $52^{\circ} / 44 \mathrm{~mm} . ; M 131 \cdot 17 ; n_{\mathrm{O}} \mathrm{I} \cdot 39619, n_{\mathrm{D}}$ $1 \cdot 39846, n_{\mathrm{O}} \mathrm{l} \cdot 40412, n_{\mathrm{G}^{\prime}} \mathrm{I} \cdot 40853$; $R_{\mathrm{G}} 35 \cdot 92, R_{\mathrm{D}} 36 \cdot 10, R_{\mathrm{F}} 36 \cdot 55, R_{\mathrm{G}^{\prime}} 36 \cdot 90 ; M n_{\mathrm{D}}^{20^{\circ}} 183 \cdot 44$. Densities determined : $d_{4^{20}}^{20} 0 \cdot 8778, d_{4^{4}}^{4 \cdot 4^{\circ}} 0 \cdot 8572, d_{4^{\circ}}^{61 \cdot 7^{\circ}} 0 \cdot 8371$. Apparatus D.

$16 \cdot 3^{\circ}$	$11 \cdot 10$	0.8814	$24 \cdot 16$	329.9	$42 \cdot 1^{\circ}$	$10 \cdot 22$	0.8565	$21 \cdot 62$	$331 \cdot 0$
$19 \cdot 2$	$11 \cdot 02$	0.8786	$23 \cdot 91$	$330 \cdot 1$	$62 \cdot 0$	9.50	0.8368	$19 \cdot 63$	$330 \cdot 0$
24.7	10.90	0.8732	23.51	$330 \cdot 8$				Mean $330 \cdot 4$	

588. Ethyl nitrate. B. p. $88^{\circ} / 757 \mathrm{~mm} . ; M 91 \cdot 07 ; n_{\mathrm{C}} \mathrm{l} \cdot 38294, n_{\mathrm{D}} \mathrm{l} \cdot 38528, n_{\mathrm{F}} \mathrm{I} \cdot 39091$, $n_{\mathrm{G}^{\prime}} \mathrm{l} \cdot 39526$; $R_{\mathrm{G}} 19 \cdot 18, R_{\mathrm{D}} 19 \cdot 28, R_{\mathrm{F}} 19 \cdot 53, R_{\mathrm{G}^{\prime}} 19 \cdot 73 ; M n_{\mathrm{D}}^{20^{\circ}} 126 \cdot 16$. Densities determined: $d_{4^{2} 0^{\circ}} 1 \cdot 1076, d_{4^{\circ}}^{40.6^{\circ}}$ 1.0809. Apparatus F.

18.3°	10.97	1.1098	28.34	189.3	41.5°	10.03	1.0797	$25 \cdot 21$	$189 \cdot 1$
31.3	10.47	1.0929	26.64	189.3				Mean $189 \cdot 2$	

589. n-Propyl nitrate. B. p. $110^{\circ} / 762 \mathrm{~mm}$.; $M 105 \cdot 10$; $n_{\mathrm{G}} \mathrm{I} \cdot 39491, n_{\mathrm{D}} \mathrm{I} \cdot 39725, n_{\mathrm{F}} \mathrm{I} \cdot 40287, n_{\mathbf{G}^{\prime}}$ $1.40706 ; R_{\mathrm{O}} 23.91, R_{\mathrm{D}} 24 \cdot 03, R_{\mathrm{F}} 24 \cdot 33, R_{\mathrm{G}^{\prime}} 24 \cdot 56 ; M n_{\mathrm{D}}^{20^{\circ}} 146 \cdot 86$. Densities determined : $d_{4}^{200^{\circ}} 1 \cdot 0538$, $d_{4}^{40.0^{*}} 1 \cdot 0316, d_{4}^{59} \cdot 7^{\circ} 1 \cdot 0066$. Apparatus F.

17.8°	11.16	1.0563	27.45	227.7	$40 \cdot 9^{\circ}$	$10 \cdot 19$	1.0316	$24 \cdot 45$	226.8
22.3	11.04	1.0512	27.02	227.9	58.4	9.60	1.0081	22.53	227.1
								Mean 227.5	

590. n-Butyl nitrate. B. p. $135-135 \cdot 5^{\circ} / 763 \mathrm{~mm}$.; $M 119 \cdot 12$; $n_{\mathrm{g}} 1.40413$, $n_{\mathrm{D}} 1 \cdot 40647, n_{\mathrm{F}} 1.41211$, n_{G} I-41653; $R_{\mathrm{G}} 28 \cdot 49, R_{\mathrm{D}} 28 \cdot 64, R_{\mathrm{F}} 28 \cdot 99, R_{\mathrm{G}} \quad 29 \cdot 26 ; M n_{\mathrm{D}}^{20^{\circ}} 167 \cdot 54$. Densities determined; $d_{40^{2}}^{20^{\circ}}$ $1 \cdot 0228, d_{4^{\circ}}^{40 \cdot 0^{\circ}} 1 \cdot 0018, d_{4^{\circ}}^{60 \cdot 7^{\circ}} 0 \cdot 9791$. Apparatus F.

13.9°	11.98	1.0293	28.71	267.9	41.8°	10.97	0.9999	25.54	267.8
18.5	11.80	1.0244	28.40	268.4	60.4	10.35	0.9794	23.60	268.1
								Mean 268.1	

591. Dimethyl carbonate. B. p. $89 \cdot 5^{\circ} / 755 \mathrm{~mm}$.; $M 90 \cdot 07$; $n_{\mathrm{O}} 1.36700, n_{\mathrm{D}} 1 \cdot 36874, n_{\mathrm{F}} 1 \cdot 37288$, $n_{G^{\prime}} 1 \cdot 37568 ; R_{\mathrm{G}} 18 \cdot 89, R_{\mathrm{D}} 18 \cdot 97, R_{\mathrm{F}} 19 \cdot 16, R_{\mathrm{G}^{\prime}} 19 \cdot 29 ; M n_{\mathrm{D}}^{20^{\circ}} 123 \cdot 28$. Densities determined : $d_{4^{2}}^{20^{\circ}}$ $1 \cdot 0706, d_{4^{0.4}}^{40 \cdot} 1 \cdot 0446, d_{4^{\circ} 8.6^{\circ}} 1 \cdot 0205$. Apparatus A.

19.3°	14.63	1.0715	29.35	$195 \cdot 7$	61.3°	12.45	1.0170	23.71	$195 \cdot 7$
$42 \cdot 1$	13.47	1.0424	26.29	195.7				Mean $195 \cdot 5$	

1854
 Physical Properties and Chemical Constitution. Part XXIII.

592. Diethyl carbonate. B. p. $125 \cdot 5^{\circ} / 758 \mathrm{~mm}$.; $M 118 \cdot 13 ; n_{\mathrm{C}} 1 \cdot 38248, n_{\mathrm{D}} 1 \cdot 38433, n_{\mathrm{F}} 1.38872$, $n_{G^{\prime}} 1 \cdot 39183 ; R_{\mathrm{C}} 28 \cdot 19, R_{\mathrm{D}} 28 \cdot 31, R_{\mathrm{F}} 28 \cdot 59, R_{\mathrm{G}^{\prime}} 28 \cdot 80$; $M n_{\mathrm{D}}^{20^{\circ}} 163.53$. Densities determined: $d_{4^{2}}^{20^{\circ}}$ $0.9764, d_{4^{\circ}}^{41 \cdot 5^{\circ}} 0.9521, d_{4^{\circ}}^{61 \cdot 7^{\circ}} 0.9302, d_{4^{8} \cdot 7^{\circ}}^{8 .} 0.9024$. Apparatus D.

t.	H.	$d_{4}^{\text {d }}$.	γ.	P.	t.	H.	$d_{\text {d }}^{\text {d }}$.	γ.	P.
$13.2{ }^{\circ}$	11.22	0.9840	$27 \cdot 27$	274.3	$41.6{ }^{\circ}$	$10 \cdot 21$	$0 \cdot 9520$	$24 \cdot 00$	$274 \cdot 7$
$16 \cdot 4$	11.03	0.9804	$26 \cdot 71$	$273 \cdot 9$	61.2	$9 \cdot 50$	$0 \cdot 9309$	21.79	$274 \cdot 2$
$23 \cdot 1$	10.88	0.9729	26.14	$274 \cdot 5$	$87 \cdot 2$	$8 \cdot 59$	$0 \cdot 9007$	19.11	$274 \cdot 2$
								Mean 274-3	

593. Di-n-propyl carbonate. B. p. $165^{\circ} / 752 \mathrm{~mm} . ; M 146 \cdot 18 ; n_{\mathrm{C}} \mathrm{l} \cdot 39876, n_{\mathrm{D}} \mathrm{l} \cdot 40072, n_{\mathrm{F}} \mathrm{l} \cdot 40543$, $n_{\mathrm{G}^{\prime}} \mathrm{I} \cdot 40885 ; R_{\mathrm{G}} 37.48, R_{\mathrm{D}} 37.64, R_{\mathrm{F}} 38.03, R_{\mathrm{G}^{\prime}} 38 \cdot 32 ; M n_{\mathrm{D}}^{20^{\circ}} 204 \cdot 75$. Densities determined: $d_{4^{\circ}}^{20}$ $0 \cdot 9429, d_{4^{\circ}}^{41 \cdot 0^{\circ}} 0 \cdot 9232, d_{4}^{61 \cdot 2^{\circ}} 0 \cdot 9032, d_{4^{87} \cdot 1^{\circ}} 0 \cdot 8769$. Apparatus D.

19.3°	11.60	0.9436	27.03	353.2	60.8°	10.18	0.9036	22.72	$353 \cdot 2$
21.9	11.52	0.9441	26.77	$353 \cdot 3$	87.3	9.30	0.8767	$20 \cdot 14$	$353 \cdot 2$
41.2	10.81	0.9230	24.64	352.9				Mean 353.2	

594. Di-n-butyl carbonate. B. p. $204 \cdot 5^{\circ} / 758 \mathrm{~mm}$.; $M 174 \cdot 23$; $n_{\mathrm{G}} \mathrm{l} \cdot 40966, n_{\mathrm{D}} \mathrm{l} \cdot 41167, n_{\mathrm{F}} 1 \cdot 41656$, $n_{\mathrm{G}^{\prime}} \mathrm{I} \cdot 42000 ; R_{\mathrm{C}} 46 \cdot 64, R_{\mathrm{D}} 46 \cdot 84, R_{\mathrm{F}} 47 \cdot 33, R_{G^{\prime}} 47 \cdot 66 ; M n_{\mathrm{D}}^{20^{\circ}} 245 \cdot 96$. Densities determined: $d_{4^{2}}^{20^{\circ}}$ $0.9251, d_{4^{\circ}}^{40 \cdot 8^{\circ}} 0.9057, d_{4^{\circ}}^{61 \cdot 0^{\circ}} 0 \cdot 8883, d_{4^{\circ}}^{87} \cdot 0^{\circ} 0 \cdot 8638$. Apparatus A.

$16 \cdot 8^{\circ}$	$15 \cdot 83$	0.9280	27.51	$430 \cdot 0$	$61 \cdot 5^{\circ}$	13.99	0.8878	$23 \cdot 26$	$431 \cdot 0$
$23 \cdot 0$	$15 \cdot 61$	0.9223	26.96	$430 \cdot 5$	$87 \cdot 0$	12.94	0.8638	20.93	$431 \cdot 4$
$41 \cdot 4$	14.81	0.9052	$25 \cdot 10$	$430 \cdot 8$				Mean 430.7	

595. Diisobutyl carbonate. B. p. $187.5^{\circ} / 763 \mathrm{~mm} . ; \quad$ 174.23; $n_{\mathrm{C}} 1 \cdot 40529, n_{\mathrm{D}} \mathrm{l} \cdot 4073 \mathrm{I}, n_{\mathrm{F}} 1 \cdot 41212$, $n_{G^{\prime}} 1.41567 ; R_{\mathrm{G}} 46.77, R_{\mathrm{D}} 46.97, R_{F} 47.46, R_{\mathcal{G}^{\prime}} 47 \cdot 82 ; M n_{\mathrm{D}}^{20^{\circ}} 245 \cdot 19$. Densities determined: $d_{4^{\circ}}^{20^{\circ}}$ $0.9137, d_{4}^{40 \cdot 50^{\circ}} 0 \cdot 8945, d_{4}^{62 \cdot 1^{\circ}} 0 \cdot 8744, d_{4^{\circ}}^{85 \cdot 0^{\circ}} 0 \cdot 8517$. Apparatus A.

14.5°	$15 \cdot 00$	0.9189	25.81	427.4	$61 \cdot 3^{\circ}$	$13 \cdot 12$	0.8752	21.50	$428 \cdot 7$
41.0	13.96	0.8940	23.37	428.5	86.3	12.02	0.8505	19.14	428.5
								Mean 428.3	

596. Methyl thiocyanate. B. p. $130 \cdot 5^{\circ} / 765 \mathrm{~mm}$.; $M 73 \cdot 11$; $n_{\mathrm{C}} \mathrm{I} \cdot 46523, n_{\mathrm{D}} 1 \cdot 46854, n_{\mathrm{F}} 1 \cdot 47658$, $n_{\mathrm{G}} 1.48278 ; R_{\mathrm{C}} 18 \cdot 82, R_{\mathrm{D}} 18.93, R_{\mathrm{F}} 19 \cdot 21, R_{\mathrm{G}^{\prime}} 19 \cdot 43 ; M n_{\mathrm{D}}^{20^{-}} 107.36$. Densities determined: $d_{4^{20}}{ }^{-}$ ${ }_{1} \cdot 0744, d_{4}^{40 \cdot 9^{\circ}}{ }^{1} \cdot 0504, d_{4^{61} \cdot 3^{\circ}}{ }^{1} \cdot 0281, d_{4}^{86} \cdot 5^{\circ}{ }_{0.9985}$. Apparatus D.

$15 \cdot 3^{\circ}$	$14 \cdot 39$	1.0798	$38 \cdot 37$	$168 \cdot 5$	$42 \cdot 5^{\circ}$	$13 \cdot 43$	1.0486	$34 \cdot 78$	$168 \cdot 5$
$21 \cdot 3$	$14 \cdot 19$	1.0729	$37 \cdot 60$	$168 \cdot 7$	$60 \cdot 9$	$12 \cdot 77$	$1 \cdot 0285$	$32 \cdot 44$	$169 \cdot 6$
$23 \cdot 7$	$14 \cdot 09$	1.0702	$27 \cdot 24$	$168 \cdot 8$	$85 \cdot 2$	11.83	1.0000	$29 \cdot 22$	$170 \cdot 1$
								Mean $169 \cdot 0$	

597. Ethyl thiocyanate. B. p. $145 \cdot 5^{\circ} / 765 \mathrm{~mm}$.; $M 87 \cdot 14$; $n_{\mathrm{C}} \mathrm{l} \cdot 45998, n_{\mathrm{D}} \mathrm{l} \cdot 46304, n_{\mathrm{F}} 1 \cdot 47070, n_{G^{\prime}}$ $1 \cdot 47656 ; R_{\mathrm{C}} 23 \cdot 59, R_{\mathrm{D}} 23 \cdot 72, R_{\mathrm{F}} 24 \cdot 06, R_{\mathrm{G}} \cdot 24 \cdot 30 ; M n_{\mathrm{D}}^{20^{\circ}}$ 127.49. Densities determined: $d_{4^{20}}^{20} 1 \cdot 0116$, $d_{4}^{4 \cdot 1 \cdot} 0 \cdot 9896, d_{4^{0}}^{6 \cdot 6} 0.9704, d_{4 \cdot}^{8 \cdot 0^{\circ}} 0.9426$. Apparatus A.

$14 \cdot 4^{\circ}$	17.84	1.0174	33.99	206.8	$41 \cdot 1^{\circ}$	$16 \cdot 63$	0.9896	30.82	$207 \cdot 4$
$19 \cdot 9$	17.53	1.0117	33.21	206.8	$61 \cdot 2$	$15 \cdot 80$	0.9698	$28 \cdot 69$	$208 \cdot 0$
27.2	17.30	1.0042	32.53	207.2	87.0	$14 \cdot 64$	0.9426	$25 \cdot 84$	$208 \cdot 4$
								Mean $207 \cdot 4$	

598. n-Propyl thiocyanate. B. p. $164 \cdot 5^{\circ} / 760 \mathrm{~mm}$.; $M 101 \cdot 17$; $n_{\mathrm{C}} 1 \cdot 46016, n_{\mathrm{D}} \mathrm{I} \cdot 46314, n_{\mathrm{F}} 1 \cdot 47050$, $n_{\mathrm{G}^{\prime}} 1.47621$; $R_{\mathrm{G}} 28.24, R_{\mathrm{D}} 28 \cdot 39, R_{\mathrm{F}} 28 \cdot 78, R_{\mathrm{G}^{\prime}} 29.08 ; M n_{\mathrm{D}}^{20^{\circ}} 148 \cdot 02$. Densities determined : $d_{4}^{20^{\circ}}$ ${ }_{0} \cdot 9817, d_{4^{\circ}}^{40 \cdot 6^{\circ}}{ }_{0} \cdot 9627, d_{4^{\circ}}^{80} 3^{\circ}{ }_{0.9439} d_{4^{8} \cdot 0^{\circ}}{ }_{0} \cdot 9233$. Apparatus D.

17.9°	13.52	0.9837	32.84	$246 \cdot 2$	$60 \cdot 9^{\circ}$	$12 \cdot 19$	0.9433	28.40	$247 \cdot 6$
$25 \cdot 4$	$13 \cdot 41$	0.9767	32.35	$247 \cdot 0$	86.8	$11 \cdot 38$	0.9187	$25 \cdot 82$	$248 \cdot 2$
41.5	12.83	0.9619	30.48	$247 \cdot 1$				Mean $247 \cdot 2$	

599. n -Butyl thiocyanate. B. p. $184^{\circ} / 770 \mathrm{~mm}$.; $M 115 \cdot 19$; $n_{\mathrm{C}} \mathrm{l} \cdot 46099$, $n_{\mathrm{D}} \mathrm{l} \cdot 46389$, $n_{\mathrm{F}} \mathrm{I} \cdot 47108$, $n_{G^{\prime}}$ I. $47660 ; R_{\mathrm{C}} 32 \cdot 89, R_{\mathrm{D}} 33 \cdot 07, R_{\mathrm{F}} 33 \cdot 51, R_{\mathrm{G}^{\prime}} 33 \cdot 84 ; M n_{\mathrm{D}}^{20^{\circ}} 168 \cdot 63$. Densities determined: $d_{4^{\circ}}^{20^{\circ}}$ $0.9610, d_{4^{40} \cdot 5^{\circ}}^{0.9433}, d_{4}^{60 \cdot 8^{\circ}} 0.9252, d_{4^{8 .}}{ }^{8.2^{\circ}} 0.9035$. Apparatus A.

$19 \cdot 2^{\circ}$	17.81	0.9617	32.07	$285 \cdot 0$	$60 \cdot 5^{\circ}$	$16 \cdot 21$	0.9255	$28 \cdot 09$	$286 \cdot 5$
$26 \cdot 5$	17.56	0.9553	31.41	$285 \cdot 5$	$85 \cdot 1$	$15 \cdot 25$	0.9036	$25 \cdot 80$	$287 \cdot 4$
$40 \cdot 4$	16.96	0.9434	29.96	$285 \cdot 7$				Mean $286 \cdot 0$	

600. Ethyl isothiocyanate. B. p. $132-132.5^{\circ} / 762 \mathrm{~mm} . ; M 87.14 ; n_{\mathrm{C}} 1.49877, n_{\mathrm{D}} 1.50435, n_{\mathrm{F}}$ 1.51495, $n_{\mathbf{G}^{\prime}} 1 \cdot 52432$; $R_{\mathrm{G}} 25 \cdot 69, R_{\mathrm{D}} 25 \cdot 92, R_{\mathrm{F}} 26 \cdot 38, R_{\mathrm{G}^{\prime}} 26 \cdot 78 ; ~ M n_{\mathrm{D}}^{20^{\circ}} 131 \cdot 09$. Densities determined : $d_{4}^{20} 0.9962, d_{4^{4}}^{4.0^{\circ}} 0.9740, d_{40}^{60 \cdot 8^{\circ}} 0.9545, d_{4}^{87} \cdot 1^{\circ} 0 \cdot 9269$. Apparatus D.

$16 \cdot 4^{\circ}$	13.49	0.9999	33.31	209.4	$60 \cdot 2^{\circ}$	$12 \cdot 00$	0.9551	$28 \cdot 30$	$210 \cdot 4$
$19 \cdot 2$	13.42	0.9970	33.04	$209 \cdot 6$	$86 \cdot 3$	11.08	0.9277	$25 \cdot 38$	$210 \cdot 8$
$41 \cdot 3$	12.67	0.9747	30.50	$210 \cdot 1$				Mean $210 \cdot 1$	

601. Allyl isothiocyanate. B. p. $151-151 \cdot 5^{\circ} / 768 \mathrm{~mm}$.; $M 99 \cdot 19, n_{\mathrm{O}} 1 \cdot 52179, n_{\mathrm{D}} 1 \cdot 52686, n_{\mathrm{F}} 1 \cdot 53970$, $n_{\mathrm{G}^{\prime}} 1 \cdot 54982, R_{\mathrm{G}} 29 \cdot 89, R_{\mathrm{D}} 30 \cdot 13, R_{\mathrm{F}} 30 \cdot 74, R_{\mathrm{G}^{\circ}} 31 \cdot 22 ; M n_{\mathrm{D}}^{20^{\circ}} 151 \cdot 45$. Densities determined: $d_{40^{20}}{ }^{\circ} 1 \cdot 0118$, $d_{4}^{40}{ }^{40} 0.9927, d_{4}^{80.9^{\circ}} 0.9723, d_{4}^{85.5}{ }^{\circ} 0.9472$. Apparatus A.

t.	H.	$d_{4}^{\text {d }}$ 。	γ.	P.	t.	H.	$d_{4}^{i^{\circ}}$.	γ.	P.
21.0°	17.95	1.0108	$33 \cdot 97$	236.9	$60.9{ }^{\circ}$	16.12	0.9723	$29 \cdot 35$	$237 \cdot 4$
$28 \cdot 1$	$17 \cdot 73$	1.0039	$33 \cdot 36$	$237 \cdot 2$	$85 \cdot 6$	$15 \cdot 11$	0.9471	$26 \cdot 80$	$238 \cdot 3$
$40 \cdot 7$	$17 \cdot 02$	0.9920	31.61	$237 \cdot 1$					$237 \cdot 4$

602. Diethyl xanthate. B. p. $70 \cdot 2^{\circ} / 4 \cdot 9 \mathrm{~mm} . ; M 150.25 ; n_{\mathrm{C}} \mathrm{l} \cdot 52775, n_{\mathrm{D}} 1.53325, n_{\mathrm{F}} 1.54795, n_{\mathbf{G}^{\prime}}$ $1 \cdot 56079$; $R_{\mathrm{C}} 42 \cdot 68, R_{\mathrm{D}} 43 \cdot 05, R_{\mathrm{F}} 44 \cdot 04, R_{\mathrm{G}} 44 \cdot 88 ; M n_{\mathrm{D}}^{20^{\circ}} 230 \cdot 38$. Densities determined : $d_{4^{\circ}}^{20} 1 \cdot 0837$, $d_{4^{\circ}}^{41 \cdot 0^{\circ}} \mathrm{I} \cdot 0647, d_{4^{\circ}}^{61 \cdot 7^{\circ}} 1 \cdot 0451, d_{4^{6}}^{86 \cdot 9^{\circ}} 1 \cdot 0213$. Apparatus D.

$19 \cdot 2^{\circ}$	$12 \cdot 82$	1.0844	$34 \cdot 33$	$335 \cdot 4$	60.2°	11.55	1.0446	29.80	$336 \cdot 1$
$25 \cdot 4$	$12 \cdot 68$	1.0787	33.78	$335 \cdot 8$	$86 \cdot 7$	10.83	1.0215	27.32	$336 \cdot 3$
41.9	12.14	1.0639	31.90	$335 \cdot 6$				Mean $335 \cdot 8$	

603. Di-n-propyl xanthate. B. p. $91 \cdot 1^{\circ} / 4.5 \mathrm{~mm}$.; $M 178.30$; $n_{\mathrm{D}} 1.51894, n_{\mathrm{D}} \mathrm{l} .52396, n_{\mathrm{F}} \mathrm{l} .53741$, $n_{\mathrm{G}} \cdot 1 \cdot 54895 ; R_{\mathrm{G}} 52 \cdot 29, R_{\mathrm{D}} 52 \cdot 72, R_{\mathrm{F}} 53 \cdot 84, R_{\mathrm{G}} 54 \cdot 80 ; M n_{\mathrm{D}}^{20^{\circ}} 271 \cdot 73$. Densities determined : $d_{40^{20}} 1 \cdot 0349$, $d_{4^{\circ}}^{41.3^{\circ}} 1 \cdot 0165, d_{4^{6}}^{61 \cdot 9^{\circ}} 0.9992, d_{4^{87}}{ }^{\circ} 0 \cdot 9767$. Apparatus A.

20.9°	16.92	$\mathrm{I} \cdot 0341$	$32 \cdot 76$	$412 \cdot 5$	$61 \cdot 5^{\circ}$	$15 \cdot 40$	0.9995	$28 \cdot 82$	$413 \cdot 3$
$28 \cdot 0$	$16 \cdot 68$	$1 \cdot 0280$	$32 \cdot 11$	$412 \cdot 9$	$87 \cdot 4$	$14 \cdot 39$	0.9764	$26 \cdot 31$	$413 \cdot 6$
$40 \cdot 8$	$16 \cdot 18$	$1 \cdot 0169$	$30 \cdot 81$	$413 \cdot 1$				Mean $413 \cdot 1$	

604. Ethyl S-n-butylxanthate. B. p. $90 \cdot 3^{\circ} / 4 \cdot 0 \mathrm{~mm} . ; M 178 \cdot 30 ; n_{\mathrm{C}} \mathrm{l} \cdot 51865, n_{\mathrm{D}} 1 \cdot 52368, n_{\mathrm{F}} 1.53710$, $n_{\mathbf{G}^{\prime}}$ I. 54872 ; $R_{\mathrm{G}} 52 \cdot 27, R_{\mathrm{D}} 52 \cdot 69, R_{\mathrm{F}} 53 \cdot 82, R_{\mathrm{G}}$ 54.78; $M n_{\mathrm{D}}^{20^{\circ}} 271 \cdot 68$. Densities determined: d_{4}^{20} $1 \cdot 0349, d_{4^{4}}^{42 \cdot 2^{\circ}} \mathrm{I} \cdot 0162, d_{4^{\circ}}^{61 \cdot 4^{\circ}} \mathrm{I} \cdot 0002, d_{4^{87}}^{87} 0^{\circ} 0 \cdot 9774$. Apparatus D.

18.0°	$12 \cdot 91$	1.0366	33.05	$412 \cdot 4$	$60 \cdot 6^{\circ}$	11.71	1.0007	28.94	$413 \cdot 3$
$23 \cdot 6$	12.73	1.0318	32.44	$412 \cdot 4$	$86 \cdot 1$	11.04	0.9783	$26 \cdot 67$	$414 \cdot 2$
42.3	12.20	1.0161	30.61	412.8				Mean 413.0	

 $n_{\mathrm{G}^{\circ}}$ not visible; $R_{\mathrm{C}} 52 \cdot 26, R_{\mathrm{D}} 52 \cdot 68, R_{\mathrm{F}} 53 \cdot 81 ; M n_{\mathrm{D}}^{20^{\circ}} 217 \cdot 68$. Densities determined: $d_{4}^{22^{\circ}}{ }^{\circ} \cdot 0351$, $d_{4^{42}} \cdot 0^{\circ} 1 \cdot 0164, d_{4^{61} \cdot 7^{\circ}}{ }^{\circ} \cdot 0001, d_{4}^{87 \cdot 0^{\circ}} 0 \cdot 9777$. Apparatus A.

$18 \cdot 3^{\circ}$	$16 \cdot 97$	1.0365	$32 \cdot 94$	$412 \cdot 1$	$61 \cdot 1^{\circ}$	$15 \cdot 38$	$1 \cdot 0006$	$28 \cdot 82$	$412 \cdot 9$
$29 \cdot 8$	$16 \cdot 79$	1.0268	$32 \cdot 28$	$413 \cdot 9$	$84 \cdot 8$	$14 \cdot 56$	0.9796	$26 \cdot 71$	$413 \cdot 8$
$40 \cdot 9$	$16 \cdot 12$	1.0173	$30 \cdot 71$	$412 \cdot 6$				Mean $413 \cdot 1$	

606. Di-n-butyl xanthate. B. p. $117^{\circ} / 4 \cdot 0 \mathrm{~mm}$.; $M 206.35$; $n_{\mathrm{O}} \mathrm{l} \cdot 50994, n_{\mathrm{D}} \mathrm{l} \cdot 51456, n_{\mathrm{F}} 1.52681$, $n_{\mathrm{G}}{ }^{\prime} 1.53704 ; R_{\mathrm{G}} 61.59, R_{\mathrm{D}} 62 \cdot 07, R_{\mathrm{F}} 63 \cdot 30, R_{\mathrm{G}} 64 \cdot 32$; $M n_{\mathrm{D}}^{20^{\circ}} 312.55$. Densities determined : $d_{4^{\circ}}^{20^{\circ}}$ $1 \cdot 0019, d_{4^{\circ}}^{4 \cdot 0^{\circ}} 0.9855, d_{4^{6}}^{60 \cdot 8^{\circ}} 0.9691, d_{4^{87}}^{87 \cdot 4^{\circ}} 0.9475$. Apparatus A.

$15 \cdot 9^{\circ}$	$17 \cdot 13$	$1 \cdot 0052$	$32 \cdot 24$	$489 \cdot 2$	$41 \cdot 3^{\circ}$	$16 \cdot 23$	0.9852	$29 \cdot 94$	$490 \cdot 0$
$20 \cdot 3$	$17 \cdot 03$	$1 \cdot 0017$	$31 \cdot 94$	$489 \cdot 8$	$60 \cdot 9$	$15 \cdot 43$	0.9690	$28 \cdot 00$	$489 \cdot 9$
$24 \cdot 9$	$16 \cdot 83$	$0 \cdot 9980$	$31 \cdot 45$	$489 \cdot 7$	$86 \cdot 9$	$14 \cdot 61$	$0 \cdot 9479$	$25 \cdot 93$	$491 \cdot 3$
								Mean $489 \cdot 8$	

The author's thanks are due to Imperial Chemical Industries for the liberal grants in support of the investigations described in Parts XVIII-XXIII, and to Dr. G. H. Jeffery, F.R.I.C., for the preparation and purification of the alkyl nitrates.

Woolwich Polytechnic, London, S.E. 18.
[Received, December 4th, 1947.]

[^0]: * Strecker and Spitaler (Ber., 1926, 59, 1773) have, however, investigated triethyl phosphite.

[^1]: * Although R_{D} is specifically mentioned, the remarks apply equally to $R_{\mathrm{C}}, R_{\mathbf{F}}$, and $R_{\mathrm{G}^{\prime}}$ throughout the disscussion.
 \dagger A higher value ($11 \cdot 29$) for the refractivity for $\mathrm{S}=$ (D line) is obtained from the ethyl and n-propyl dithiothioncarbonate $\mathrm{RO} \cdot \mathrm{C} \cdot \mathrm{S}_{2} \cdot \stackrel{\mathrm{~S}}{\mathrm{~S}} \cdot \mathrm{O} \cdot \mathrm{OR}$ (Price and Twiss, J., 1912, 51, 1263 ; Nasini and Skala, Gazzetta, 1887, 17,67) ; this value must be regarded as approximate as it is based upon early measurements of the refractivities.

